DNA Duplex Formation with a Coarse-Grained Model.

J Chem Theory Comput

Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14850, United States.

Published: November 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A middle-resolution coarse-grained model of DNA is proposed. The DNA chain is built of spherical and planar rigid bodies connected by elastic virtual bonds. The bonded part of the potential energy function is fit to potentials of mean force of model systems. The rigid bodies are sets of neutral, charged, and dipolar beads. Electrostatic and van der Waals interactions are parametrized by our recently developed procedure [Maciejczyk, M.; Spasic, A.; Liwo, A.; Scheraga, H.A. , , 1644]. Interactions with the solvent and an ionic cloud are approximated by a multipole-multipole Debye-Hückel model. A very efficient -RATTLE algorithm, for integrating the movement of rigid bodies, is implemented. It is the first coarse-grained model, in which both bonded and nonbonded interactions were parametrized ab initio and which folds stable double helices from separated complementary strands, with the final conformation close to the geometry of experimentally determined structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230386PMC
http://dx.doi.org/10.1021/ct4006689DOI Listing

Publication Analysis

Top Keywords

coarse-grained model
12
rigid bodies
12
interactions parametrized
8
model
5
dna duplex
4
duplex formation
4
formation coarse-grained
4
model middle-resolution
4
middle-resolution coarse-grained
4
model dna
4

Similar Publications

Multivalent binding and the resulting dynamical clustering of receptors and ligands are known to be key features in biological interactions. For optimizing biomaterials capable of similar dynamical features, it is essential to understand the first step of these interactions, namely the multivalent molecular recognition between ligands and cell receptors. Here, we present the reciprocal cooperation between dynamic ligands in supramolecular polymers and dynamic receptors in model cell membranes, determining molecular recognition and multivalent binding via receptor clustering.

View Article and Find Full Text PDF

Adversarial training for dynamics matching in coarse-grained models.

J Chem Phys

September 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 5735 S. Ellis Ave., SCL 123, Chicago, Illinois 60637, USA.

Molecular dynamics simulations are essential for studying complex molecular systems, but their high computational cost limits scalability. Coarse-grained (CG) models reduce this cost by simplifying the system, yet traditional approaches often fail to maintain dynamic consistency, compromising their reliability in kinetics-driven processes. Here, we introduce an adversarial training framework that aligns CG trajectory ensembles with all-atom (AA) reference dynamics, ensuring both thermodynamic and kinetic fidelity.

View Article and Find Full Text PDF

CF-DTI: coarse-to-fine feature extraction for enhanced drug-target interaction prediction.

Health Inf Sci Syst

December 2025

School of Information Science and Automation, Northeastern University, Shenyang, 110819 China.

Accurate prediction of drug-target interactions (DTIs) is crucial for improving the efficiency and success rate of drug development. Despite recent advancements, existing methods often fail to leverage interaction features at multiple granular levels, resulting in suboptimal data utilization and limited predictive performance. To address these challenges, we propose CF-DTI, a coarse-to-fine drug-target interaction model that integrates both coarse-grained and fine-grained features to enhance predictive accuracy.

View Article and Find Full Text PDF

From flux analysis to self contained cellular models.

Front Syst Biol

August 2025

Systems Biotechnology, School of Engineering and Design, Technical University of Munich, Munich, Germany.

Mathematical models for cellular systems have become more and more important for understanding the complex interplay between metabolism, signalling, and gene expression.In this manuscript, starting from the well-known flux balance analysis, tools and methods are summarised and illustrated by various examples that describe the way to models with kinetics for individual reactions steps that are finally self-contained. While flux analysis requires known (measured) input fluxes, self-contained (or self-sustained) models only get information on concentrations of environmental components.

View Article and Find Full Text PDF

Crystallization and crystal morphology of polymers: A multiphase-field study.

J Thermoplast Compos Mater

August 2025

Institute for Applied Materials - Microstructure Modeling and Simulation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

In this paper, we introduce a coarse-grained model of polymer crystallization using a multiphase-field approach. The model combines a multiphase-field method, Nakamura's kinetic equation, and the equation of heat conduction for studying microstructural evolution of crystallization under isothermal and non-isothermal conditions. The multiphase-field method provides flexibility in adding any number of phases with different properties making the model effective in studying blends or composite materials.

View Article and Find Full Text PDF