98%
921
2 minutes
20
The energetics for the interaction of the noble gas atoms with the carbon nanotubes (CNTs) are investigated using an analytical model and density functional theory calculations. Encapsulation of the noble gas atoms, He, Ne, Ar, Kr, and Xe into CNTs of various chiralities is studied in detail using an analytical model, developed earlier by Hill and co-workers. The constrained motion of the noble gas atoms along the axes of the CNTs as well as the off-axis motion are discussed. Analyses of the forces, interaction energies, acceptance and suction energies for the encapsulation enable us to predict the optimal CNTs that can encapsulate each of the noble gas atoms. We find that CNTs of radii 2.98 - 4.20 Å (chiral indices, (5,4), (6,4), (9,1), (6,6), and (9,3)) can efficiently encapsulate the He, Ne, Ar, Kr, and Xe atoms, respectively. Endohedral adsorption of all the noble gas atoms is preferred over exohedral adsorption on various CNTs. The results obtained using the analytical model are subsequently compared with the calculations performed with the dispersion-including density functional theory at the M06 - 2X level using a triple-zeta basis set and good qualitative agreement is found. The analytical model is however found to be computationally cheap as the equations can be numerically programmed and the results obtained in comparatively very less time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4900963 | DOI Listing |
J Comput Chem
September 2025
Institute of Atomic and Molecular Physics, Jilin University, Changchun, China.
Quantum chemical calculations have been performed to investigate the structure, stability, and bonding in noble gas (Ng) bound BeB complexes. The present results show that BeB , a charge-separated [Be][B][Be] cluster, can employ both its cationic Be center and anionic B center to bind Ng atoms. It can bind a total of seven Ng atoms, resulting in the formation of a highly symmetric (Ng)Be(Ng)B complex, having D point group.
View Article and Find Full Text PDFRadiol Cardiothorac Imaging
October 2025
Edinburgh Imaging and Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
Functional thoracic MRI provides regional assessment of the three principal components of lung function: ventilation, perfusion, and gas exchange. It offers advantages over pulmonary function tests like spirometry, which yield only global measurements. MRI enables comprehensive evaluation of respiratory mechanics, including chest wall and diaphragm motion, dynamic large airway instability, and lung ventilation using various contrast mechanisms and gas agents.
View Article and Find Full Text PDFNatl Sci Rev
September 2025
State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
Given that K constitutes about 3 wt.% of Earth's crust and is present in most rock-forming minerals, and that Ar diffusion in minerals is temperature-dependent, Ar-based geochronology (Ar/Ar and K-Ar dating) can date most rocks and also reveal their thermal history. This paper reviews recent advances and longstanding limitations in Ar/Ar and K-Ar geochronology, and provides perspectives into future research on Ar-based geochronometers.
View Article and Find Full Text PDFSensors (Basel)
August 2025
College of Chemistry, Liaoning University, Shenyang 110036, China.
Catalytic combustion gas sensors are critical for safety and environmental monitoring, yet face persistent challenges in sensitivity and detection limits amid expanding market demands. This study innovatively employs attapulgite as a support material functionalized with noble metal catalyst Pd to fabricate a low-cost, high-sensitivity sensor. Characterization (SEM/EDS) confirms a unique Pd/attapulgite core-shell structure with engineered Pd gradient distribution (7.
View Article and Find Full Text PDFUltrason Sonochem
August 2025
ICSM, Univ Montpellier, UMR 5257, CEA, CNRS, ENSCM, Marcoule, France. Electronic address:
Large number of chemical reactions can be described rigorously using classical thermodynamics and classical kinetics. However, there are an increasing number of examples of chemical reactions that deviate from "classical" behavior. Describing them requires considering quantum effects.
View Article and Find Full Text PDF