Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wnt/β-catenin signalling controls development and adult tissue homeostasis and causes cancer when inappropriately activated. In unstimulated cells, an Axin1-centred multi-protein complex phosphorylates the transcriptional co-activator β-catenin, marking it for degradation. Wnt signalling antagonizes β-catenin proteolysis, leading to its accumulation and target gene expression. How Wnt stimulation alters the size distribution, composition and activity of endogenous Axin1 complexes remains poorly understood. Here, we employed two-dimensional blue native/SDS-PAGE to analyse endogenous Axin1 and β-catenin complexes during Wnt signalling. We show that the size range of Axin1 complexes is conserved between species and remains largely unaffected by Wnt stimulation. We detect a striking Wnt-dependent, cytosolic accumulation of both non-phosphorylated and phosphorylated β-catenin within a 450 kDa Axin1-based complex and in a distinct, Axin1-free complex of 200 kDa. These results argue that during Wnt stimulation, phosphorylated β-catenin is released from the Axin1 complex but fails to undergo immediate degradation. Importantly, in APC-mutant cancer cells, the distribution of Axin1 and β-catenin complexes strongly resembles that of Wnt-stimulated cells. Our findings argue that Wnt signals and APC mutations interfere with the turnover of phosphorylated β-catenin. Furthermore, our results suggest that the accumulation of small-sized β-catenin complexes may serve as an indicator of Wnt pathway activity in primary cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248064PMC
http://dx.doi.org/10.1098/rsob.140120DOI Listing

Publication Analysis

Top Keywords

phosphorylated β-catenin
16
wnt signalling
12
wnt stimulation
12
β-catenin complexes
12
β-catenin
9
wnt
8
endogenous axin1
8
axin1 complexes
8
axin1 β-catenin
8
argue wnt
8

Similar Publications

Applying natural product repurposing strategy to identify baicalein as novel caseinolytic protease P inhibitor and its application in the treatment of rice bacterial diseases.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:

Plant diseases caused by bacteria affect the yield of crop, greatly reduce the quality of food, and thus posing a great threat to food safety. To fill the gap that no report about ClpP inhibitor is applied in agri-food production field, engineering natural-product repurposing strategy, 55 of natural products were screened using the combination of ClpP inhibitors of Xanthomonas oryzae pv. oryzae (Xoo) screening assay and anti-Xoo activity experiment.

View Article and Find Full Text PDF

In-capillary enzymatic digestion beyond trypsin for the sensitive targeted bottom-up analysis of protein biomarkers by capillary electrophoresis-mass spectrometry.

Anal Chim Acta

November 2025

Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Spain. Electronic address:

Background: Targeted bottom-up proteomics is of great interest for the straightforward, accurate, and sensitive measurement of specific protein biomarkers from surrogate peptide fragments. However, this approach typically relies on off-line enzymatic digestion with trypsin, a time-consuming step that may be inadequate for covering certain sequence regions containing important post-translational modifications (PTMs).

Results: In this study, we present an in-line enzymatic digestion strategy for the targeted bottom-up analysis of α-synuclein (α-syn), which is a protein biomarker of Parkinson's disease (PD).

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains one of the most lethal malignancies globally, driven by complex molecular mechanisms that contribute to its progression and metastasis. This study focuses on the role of N1-methyladenosine (mA) RNA methylation in CRC, particularly its effect on Rab Interacting Lysosomal Protein-Like 1 (RILPL1) expression and the downstream activation of the CaMKII/CREB signaling pathway. Bioinformatics analysis identified RILPL1 as a key gene associated with poor CRC prognosis, exhibiting increased expression levels in cancerous tissues, with further elevation in metastatic samples.

View Article and Find Full Text PDF

Integrin β3 dysregulation impairs megakaryopoiesis and microparticle production via disrupting ROCK-dependent cytoskeletal dynamics.

J Thromb Haemost

September 2025

Key Laboratory of Thrombosis and Hemostasis of National Health Commission, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Collaborative Innovation

Background: Megakaryocyte (MK) fragmentation into proplatelets (PPTs) and microparticles (MKMPs) is well established, yet the mechanisms underlying MKMP generation remain unclear.

Objectives: In order to investigate the role of integrin β3 and cytoskeletal dynamics during megakaryopoiesis and explore potential therapeutic targets for thrombocytopenia.

Methods: Proplatelet formation and MKMP release were evaluated both in vivo and in vitro under integrin β3 receptor impaired environment.

View Article and Find Full Text PDF

Kraft lignin (KL) is a byproduct of the pulp and paper industry and has been extensively used in several high-value-added applications. The aim of this study was to evaluate the potential of phosphorylated Kraft lignins obtained by different reaction conditions (e.g.

View Article and Find Full Text PDF