98%
921
2 minutes
20
Purpose: In order to build up a reliable dose monitoring system for boron neutron capture therapy (BNCT) applications at the TRIGA reactor in Mainz, a computer model for the entire reactor was established, simulating the radiation field by means of the Monte Carlo method. The impact of different source definition techniques was compared and the model was validated by experimental fluence and dose determinations.
Methods: The depletion calculation code origen2 was used to compute the burn-up and relevant material composition of each burned fuel element from the day of first reactor operation to its current core. The material composition of the current core was used in a mcnp5 model of the initial core developed earlier. To perform calculations for the region outside the reactor core, the model was expanded to include the thermal column and compared with the previously established attila model. Subsequently, the computational model is simplified in order to reduce the calculation time. Both simulation models are validated by experiments with different setups using alanine dosimetry and gold activation measurements with two different types of phantoms.
Results: The mcnp5 simulated neutron spectrum and source strength are found to be in good agreement with the previous attila model whereas the photon production is much lower. Both mcnp5 simulation models predict all experimental dose values with an accuracy of about 5%. The simulations reveal that a Teflon environment favorably reduces the gamma dose component as compared to a polymethyl methacrylate phantom.
Conclusions: A computer model for BNCT dosimetry was established, allowing the prediction of dosimetric quantities without further calibration and within a reasonable computation time for clinical applications. The good agreement between the mcnp5 simulations and experiments demonstrates that the attila model overestimates the gamma dose contribution. The detailed model can be used for the planning of structural modifications in the thermal column irradiation channel or the use of different irradiation sites than the thermal column, e.g., the beam tubes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.4897242 | DOI Listing |
Mar Environ Res
September 2025
Department of Ocean Integrated Science, Chonnam National University, 59626, Yeosu, Republic of Korea. Electronic address:
Marine heatwaves (MHWs) are increasing in frequency and intensity worldwide, significantly impacting marine ecosystems. However, studies on phytoplankton community changes in coastal waters under such conditions remain. In the summer of 2024, an extreme high-temperature event (>28 °C) occurred in the southern coastal waters of Korea, providing an opportunity to investigate phytoplankton community dynamics under thermal stress.
View Article and Find Full Text PDFJ Chromatogr A
August 2025
Technical Center, Shanghai Tobacco Group Ltd. Co., Shanghai 201315, China. Electronic address:
Polycyclic aromatic hydrocarbons (PAHs), carcinogenic persistent organic compounds, require ultrasensitive detection for health risk assessment of tobacco products. While traditional cigarette smoke contains FDA-monitored PAHs (e.g.
View Article and Find Full Text PDFJ Chromatogr A
August 2025
School of Mechanical and Electrical Engineering, Schoow University, Suzhou 215131, China. Electronic address:
With the widespread application of lithium batteries in energy storage systems, their safety concerns have attracted increasing attention. Electrolyte leakage, as one of the primary safety hazards, necessitates highly sensitive and rapid detection technologies for early warning. Addressing the limitations of conventional methods (e.
View Article and Find Full Text PDFData Brief
October 2025
Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.
With the growing demand for high-throughput analyses that can detect diverse molecules with varying physicochemical properties in shorter times, researchers are increasingly focused on developing or modifying analytical methods. This is particularly relevant in the food, pharmaceutical/nutraceutical, cosmetic, agricultural, and environmental industries. This study aimed to modify, establish, and validate a high-performance liquid chromatography method with ultraviolet detection (HPLC-UV) for the simultaneous determination of disodium guanylate (GMP) and disodium inosinate (IMP) in mushrooms, using as a model.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Physics, University of Pavia, Pavia, Italy.
Background: Alzheimer's disease (AD) is characterized by the accumulation of -Amyloid and proteins in the brain that causes dementia. To date, there is no cure capable of eradicating AD, so it is necessary to study a performing therapy. The NECTAR project aims to investigate an extension of the conventional Boron Neutron Capture Therapy principles as a possible treatment for AD at different scales (protein, cells, animal).
View Article and Find Full Text PDF