98%
921
2 minutes
20
We report a likely candidate gene, CcTFL1, for determinacy in pigeonpea through candidate gene sequencing analysis, mapping, QTL analysis together with comparative genomics and expression profiling. Pigeonpea (Cajanus cajan) is the sixth most important legume crop grown on ~5 million hectares globally. Determinacy is an agronomically important trait selected during pigeonpea domestication. In the present study, seven genes related to determinacy/flowering pattern in pigeonpea were isolated through a comparative genomics approach. Single nucleotide polymorphism (SNP) analysis of these candidate genes on 142 pigeonpea lines found a strong association of SNPs with the determinacy trait for three of the genes. Subsequently, QTL analysis highlighted one gene, CcTFL1, as a likely candidate for determinacy in pigeonpea since it explained 45-96 % of phenotypic variation for determinacy, 45 % for flowering time and 77 % for plant height. Comparative genomics analysis of CcTFL1 with the soybean (Glycine max) and common bean (Phaseolus vulgaris) genomes at the micro-syntenic level further enhanced our confidence in CcTFL1 as a likely candidate gene. These findings have been validated by expression analysis that showed down regulation of CcTFL1 in a determinate line in comparison to an indeterminate line. Gene-based markers developed in the present study will allow faster manipulation of the determinacy trait in future breeding programs of pigeonpea and will also help in the development of markers for these traits in other related legume species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236620 | PMC |
http://dx.doi.org/10.1007/s00122-014-2406-8 | DOI Listing |
Eur J Gastroenterol Hepatol
September 2025
Department of Gastroenterology, First Affiliated Hospital of Shantou University Medical College, Shantou.
Background: Crohn's disease (CD) and rheumatoid arthritis (RA) are autoimmune diseases. CD is known to be closely associated with RA. However, the mechanisms underlying these relationships remain unclear.
View Article and Find Full Text PDFBioinformatics
September 2025
The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
Motivation: Drug repositioning presents a streamlined and cost-efficient way to expand the range of therapeutic possibilities. Drugs with human genetic evidence are more likely to advance successfully through clinical trials towards FDA approval. Single gene-based drug repositioning methods have been implemented, but approaches leveraging a broad spectrum of molecular signatures remain underexplored.
View Article and Find Full Text PDFBioinformatics
September 2025
Computational Health Center, Helmholtz Center Munich, Neuherberg, 85764, Germany.
Motivation: Recent pandemics have revealed significant gaps in our understanding of viral pathogenesis, exposing an urgent need for methods to identify and prioritize key host proteins (host factors) as potential targets for antiviral treatments. De novo generation of experimental datasets is limited by their heterogeneity, and for looming future pandemics, may not be feasible due to limitations of experimental approaches.
Results: Here we present TransFactor, a computational framework for predicting and prioritizing candidate host factors using only protein sequence data.
Cancer Biother Radiopharm
September 2025
School of Food Science, Nanjing Xiaozhuang University, Nanjing, China.
Lung cancer remains one of the leading causes of cancer-related mortality worldwide, highlighting the urgent need for more effective and targeted therapeutic strategies. Traditional Chinese Medicine (TCM), known for its favorable safety profile and broad pharmacological effects, offers promising candidates for cancer treatment. Salvianolic acid F (SAF), a key bioactive compound derived from , has demonstrated antitumor potential, but its role and underlying mechanisms in lung cancer remain inadequately characterized.
View Article and Find Full Text PDFClin Appl Thromb Hemost
September 2025
Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
Hemophilia, an X-linked monogenic disorder, arises from mutations in the or genes, which encode clotting factor VIII (FVIII) or clotting factor IX (FIX), respectively. As a prominent hereditary coagulation disorder, hemophilia is clinically manifested by spontaneous hemorrhagic episodes. Severe cases may progress to complications such as stroke and arthropathy, significantly compromising patients' quality of life.
View Article and Find Full Text PDF