Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377578PMC
http://dx.doi.org/10.1038/srep06645DOI Listing

Publication Analysis

Top Keywords

tcp transcription
16
tcp genes
16
analysis tcp
12
transcription factors
12
tcp
10
genome-wide identification
8
identification expression
8
expression analysis
8
gossypium raimondii
8
study performed
8

Similar Publications

Exogenous Melatonin Regulates Hormone Signalling and Photosynthesis-Related Genes to Enhance Brassica napus. Yield: A Transcriptomic Perspective.

J Pineal Res

September 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.

Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.

View Article and Find Full Text PDF

Fine tuning wheat development for the winter to spring transition.

Plant Commun

September 2025

School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. Electronic address:

The coordination of floral developmental stages with the environment is important for reproductive success and the optimization of crop yields. The timing of different developmental stages contributes to final yield potential with optimal adaptation enabling development to proceed without being impacted by seasonal weather events, including frosts or end of season drought. Here we characterise the role of FLOWERING LOCUS T 3 (FT3) in hexaploid bread wheat (Triticum aestivum) during the early stages of floral development.

View Article and Find Full Text PDF

MicroRNA319-TCP19-IAA3.2 Module Mediates Lateral Root Growth in .

Plants (Basel)

August 2025

Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China.

MicroRNA319 (miR319) and its targets TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are well-characterized regulators of leaf and flower development, yet their role in root development remains elusive. Here, we demonstrated that overexpression of led to a decrease in the number and density of lateral roots in poplar, while repressing by short tandem target mimics (STTM) promoted lateral root (LR) development. The auxin signaling repressors and were upregulated in -OE plants but downregulated in -STTM plants.

View Article and Find Full Text PDF

Evolutionary Analysis of the Land Plant-Specific TCP Interactor Containing EAR Motif Protein (TIE) Family of Transcriptional Corepressors.

Plants (Basel)

August 2025

Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina.

The plant-specific TCP transcription factor family originated before the emergence of land plants. However, the timing of the appearance of their specific transcriptional repressor family, the TCP Interactor containing EAR motif protein (TIE), remains unknown. Here, through phylogenetic analyses, we traced the origin of the TIE family to the early evolution of the embryophyte, while an earlier diversification in algae cannot be ruled out.

View Article and Find Full Text PDF

Among tropical viviparous water lilies (Nymphaea L.), double-petaled cultivars are exceptionally rare, and the molecular mechanisms underlying their floral organ development remain largely unexplored. In this study, we identified Nymphaea 'Candy Rain' as the sole known tropical water lily cultivar exhibiting a double-petaled phenotype, characterized by complete petaloid conversion of innermost stamens.

View Article and Find Full Text PDF