Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Interleukin-17 (IL-17A) expression is increased in prostate cancer. This study investigated the expression of IL-17A receptor C (IL-17RC) in prostatic intraepithelial neoplasia (PIN) lesions and the effects of IL-17A on prostatic epithelial cells in studies.

Methods: IL-17RC expression in human and rodent prostate tissues was detected by immunohistochemistry. Quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot analyses were used to determine mRNA and protein expression in human and mouse prostatic epithelial cell lines.

Results: IL-17RC protein was increased in human and rodent PIN lesions, compared to the normal human and rodent prostatic epithelium. IL-17A treatment activated the Nuclear Factor-κB (NF-κB) and/or Extracellular signal-Regulated Kinase (ERK) pathways in human PIN and LNCaP cell lines as well as mouse prostate cancer cell line TRAMP-C1. IL-17A treatment did not affect cell growth of the cell lines studied. However, IL-17A induced expression of CXCL1, CXCL2, CCL2, CCL5, and IL-6 in human and mouse prostatic epithelial cell lines. When the full-length IL-17RC was over-expressed in human PIN and LNCaP cell lines, activation of NF-κB and/or ERK pathways and expression of CXCL1, CXCL2, and CCL5 chemokines were significantly enhanced upon IL-17A treatment.

Conclusion: These findings suggest that the prostatic epithelial cells in PIN lesions may respond to IL-17A stimuli with augmented synthesis of chemokines, due to increased IL-17RC expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180499PMC

Publication Analysis

Top Keywords

prostatic epithelial
20
cell lines
16
epithelial cells
12
pin lesions
12
human rodent
12
expression
8
cell
8
cell growth
8
il-17a
8
prostate cancer
8

Similar Publications

Prostate cancer is a significant global health issue with inflammation emerging as a critical driver of progression. The prostate tumor microenvironment (TME) is comprised of tumor cells, mesenchymal stem cells, immune cells, cancer-associated fibroblasts, adipocytes, and the extracellular matrix. All of these TME components interact soluble factors, such as growth factors, cytokines, and chemokines.

View Article and Find Full Text PDF

Age is a major risk factor for a range of diseases including prostate cancer. Understanding how age influences the susceptibility of normal prostate epithelial cells to cancer initiation is complicated by the fact that aging affects all tissues in the body. Assessing how various aging mechanisms influence the prostate epithelium is a necessary step to determine the critical factors associated with aging that increase prostate cancer risk.

View Article and Find Full Text PDF

In this study, we synthesized a series of novel -acetyl Schiff bases (-) containing 1,2,4-triazole moiety and evaluated their potential as anticancer agents through both experimental and computational approaches. Cytotoxicity assays on prostate cancer (PC) (DU145) and normal epithelial cells (PNT1a) demonstrated selective inhibition, particularly for compounds , , and , with IC values of 73.25, 49.

View Article and Find Full Text PDF

Despite the expanding clinical application of second-generation anti-androgens like enzalutamide (ENZ) in hormone-sensitive prostate cancer (HSPC), therapeutic resistance culminating in castration-resistant prostate cancer (CRPC) persists as an unresolved clinical crisis. Through comprehensive single-cell transcriptomic profiling of ENZ-naïve and ENZ-treated tumors, an expansion of ENZ-resistant myofibroblastic cancer-associated fibroblast (designated STEAP4 myoCAF) is identified that correlates with adverse clinical outcomes. Strikingly, STEAP4 myoCAF demonstrated intrinsic ENZ resistance through a mechanistically novel pathway involving transcription factor binding to IGHM enhancer 3 (TFE3)-mediated autophagy activation.

View Article and Find Full Text PDF

Historically, polyploid giant cancer cells (PGCCs) within tumors have been ignored as superfluous inflammatory refuse with no intrinsic clinical or biological relevance. However recently, multiple studies have described the existence PGCCs in solid tumor masses that appear to correlate with tumor progression, and can also appear in blood circulation as cancer associated macrophage like cells (CAMLs). In an effort to understand the clinical and biological role of CAMLs (i.

View Article and Find Full Text PDF