98%
921
2 minutes
20
The guanine nucleotide exchange factor SLAT (SWAP-70-like adaptor of T cells) regulates T cell activation and differentiation by enabling Ca(2+) release from intracellular stores in response to stimulation of the T cell receptor (TCR). We found a TCR-induced association between SLAT and inositol 1,4,5-trisphosphate (IP3) receptor type 1 (IP3R1). The N-terminal region of SLAT, which contains two EF-hand motifs that we determined bound Ca(2+), and the SLAT pleckstrin homology (PH) domain independently bound to IP3R1 by associating with a conserved motif within the IP3R1 ligand-binding domain. Disruption of the SLAT-IP3R1 interaction with cell-permeable, IP3R1-based fusion peptides inhibited TCR-stimulated Ca(2+) signaling, activation of the transcription factor NFAT (nuclear factor of activated T cells), and production of cytokines, suggesting that this interaction is required for optimal T cell activation. The finding that SLAT is an IP3R1-interacting protein required for T cell activation suggests that this interaction could be a potential target for a selective immunosuppressive drug.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300114 | PMC |
http://dx.doi.org/10.1126/scisignal.2005565 | DOI Listing |
Histol Histopathol
September 2025
Center for Experimental Teaching, School of Pharmacy, Guangzhou Medical University, Guangzhou, China.
Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.
Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.
Haematologica
September 2025
Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel.
We previously used a disease-specific B cell receptor (BCR) point mutation (IGLV3-21R110) for selective targeting of a high-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. Since CLL is a disease of the elderly and a significant fraction of patients is not able to physically tolerate CAR T cell treatment, we explored bispecific antibodies as an alternative for precision targeting of this tumor mutation. Heterodimeric IgG1-based antibodies consisting of a fragment crystallizable region (Fc) attached to both an anti-IGLV3-21R110 Fab and an anti-CD3 (UCHT1) single chain variable fragment (R110-bsAb) selectively killed cell lines engineered to express high levels of the neoepitope as well as primary CLL cells using healthy donor and CLL patient-derived T cells as effectors.
View Article and Find Full Text PDFHaematologica
September 2025
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD,.
Immunotherapies, including cell therapies, are effective anti-cancer agents. However, cellular product persistence can be limiting with short functional duration of activity contributing to disease relapse. A variety of manufacturing protocols are used to generate therapeutic engineered T-cells; these differ in techniques used for T-cell isolation, activation, genetic modification, and other methodology.
View Article and Find Full Text PDFAutophagy
September 2025
Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Macroautophagy/autophagy is an evolutionarily conserved process through which cells degrade cytoplasmic substances via autophagosomes. During the initiation of autophagosome formation, the ULK/Atg1 complex serves as a scaffold that recruits and regulates downstream ATG/Atg proteins and ATG9/Atg9-containing vesicles. Despite the essential role of the ULK/Atg1 complex, its components have changed during evolution; the ULK complex in mammals consists of ULK1 (or ULK2), RB1CC1, ATG13, and ATG101, whereas the Atg1 complex in the yeast lacks Atg101 but instead has Atg29 and Atg31 along with Atg17.
View Article and Find Full Text PDFHaematologica
September 2025
Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky,.
Maintaining a healthy pool of circulating red blood cells (RBCs) is essential for adequate perfusion, as even minor changes in the population can impair oxygen delivery, resulting in serious health complications including tissue ischemia and organ dysfunction. This responsibility largely falls to specialized macrophages in the spleen, known as red pulp macrophages, which efficiently take up and recycle damaged RBCs. However, questions remain regarding how these macrophages are acutely activated to accommodate increased demand.
View Article and Find Full Text PDF