Publications by authors named "Stephane Becart"

Ligation of retinoic acid receptor alpha (RARα) by RA promotes varied transcriptional programs associated with immune activation and tolerance, but genetic deletion approaches suggest the impact of RARα on TCR signaling. Here, we examined whether RARα would exert roles beyond transcriptional regulation. Specific deletion of the nuclear isoform of RARα revealed an RARα isoform in the cytoplasm of T cells.

View Article and Find Full Text PDF
Article Synopsis
  • The immune mechanisms behind synovitis and joint damage in rheumatoid arthritis (RA) are still not well understood, particularly the role of CD8 T cells, which have been found in higher numbers in RA patients.
  • Researchers conducted advanced single-cell analysis and T cell receptor sequencing on CD8 T cells from the blood of RA patients with anti-citrullinated protein antibodies (ACPA) to explore their functionality.
  • They discovered two distinct CD8 T cell subpopulations: one that aggressively targets citrullinated autoantigens and is linked to joint damage, and a second smaller memory population that plays a different role, suggesting a complex contribution to the disease process.
View Article and Find Full Text PDF

BACKGROUNDAntigen-specific regulation of autoimmune disease is a major goal. In seropositive rheumatoid arthritis (RA), T cell help to autoreactive B cells matures the citrullinated (Cit) antigen-specific immune response, generating RA-specific V domain glycosylated anti-Cit protein antibodies (ACPA VDG) before arthritis onset. Low or escalating antigen administration under "sub-immunogenic" conditions favors tolerance.

View Article and Find Full Text PDF

While antibodies to citrullinated proteins have become a diagnostic hallmark in rheumatoid arthritis (RA), we still do not understand how the autoimmune T cell response is influenced by these citrullinated proteins. To investigate the role of citrullinated antigens in HLA-DR1- and DR4-restricted T cell responses, we utilized mouse models that express these MHC-II alleles to determine the relationship between citrullinated peptide affinity for these DR molecules and the ability of these peptides to induce a T cell response. Using a set of peptides from proteins thought to be targeted by the autoimmune T cell responses in RA, aggrecan, vimentin, fibrinogen, and type II collagen, we found that while citrullination can enhance the binding affinity for these DR alleles, it does not always do so, even when in the critical P4 position.

View Article and Find Full Text PDF

At the onset of a drug discovery program, the goal is to identify novel compounds with appropriate chemical features that can be taken forward as lead series. Here, we describe three prospective case studies, Bruton Tyrosine Kinase (BTK), RAR-Related Orphan Receptor γ t (RORγt), and Human Leukocyte Antigen DR isotype (HLA-DR) to illustrate the positive impact of high throughput virtual screening (HTVS) on the successful identification of novel chemical series. Each case represents a project with a varying degree of difficulty due to the amount of structural and ligand information available internally or in the public domain to utilize in the virtual screens.

View Article and Find Full Text PDF

It has been hypothesized that HLA class II alleles associated with rheumatoid arthritis (RA) preferentially present self-antigens altered by post-translational modification, such as citrullination. To understand the role of citrullination we tested four RA-associated citrullinated epitopes and their corresponding wild-type version for binding to 28 common HLA class II. Binding patterns were variable, and no consistent impact of citrullination was identified.

View Article and Find Full Text PDF

SLAT (also known as DEF6) promotes T cell activation and differentiation by regulating NFAT-Ca(2+) signaling. However, its role in TCR-mediated inside-out signaling, which induces integrin activation and T cell adhesion, a central process in T cell immunity and inflammation, has not been explored. Here, we show that SLAT is crucial for TCR-induced adhesion to ICAM-1 and affinity maturation of LFA-1 in CD4(+) T cells.

View Article and Find Full Text PDF

The guanine nucleotide exchange factor SLAT (SWAP-70-like adaptor of T cells) regulates T cell activation and differentiation by enabling Ca(2+) release from intracellular stores in response to stimulation of the T cell receptor (TCR). We found a TCR-induced association between SLAT and inositol 1,4,5-trisphosphate (IP3) receptor type 1 (IP3R1). The N-terminal region of SLAT, which contains two EF-hand motifs that we determined bound Ca(2+), and the SLAT pleckstrin homology (PH) domain independently bound to IP3R1 by associating with a conserved motif within the IP3R1 ligand-binding domain.

View Article and Find Full Text PDF

Regulatory T (Treg) cells, which maintain immune homeostasis and self-tolerance, form an immunological synapse (IS) with antigen-presenting cells (APCs). However, signaling events at the Treg cell IS remain unknown. Here we show that the kinase PKC-η associated with CTLA-4 and was recruited to the Treg cell IS.

View Article and Find Full Text PDF

After antigenic stimulation, CD8(+) T cells undergo clonal expansion and differentiation into CTLs that can mount a strong defense against intracellular pathogens and tumors. SWAP-70-like adapter of T cells (SLAT), also known as Def6, is a novel guanine nucleotide exchange factor for the Cdc42 GTPase and plays a role in CD4(+) T cell activation and Th cell differentiation by controlling Ca(2+)/NFAT signaling, but its requirement in CD8(+) T cell response has not been explored. Using a range of transgenic and knockout in vivo systems, we show that SLAT is required for efficient expansion of CD8(+) T cells during the primary response but is not necessary for CTL differentiation.

View Article and Find Full Text PDF

SWAP-70-like adapter of T cells (SLAT; also known as Def6) is a novel guanine nucleotide exchange factor for Rho GTPases that has been previously shown to play a role in CD4+ T cell activation and Th1/Th2 differentiation. However, the role of SLAT/Def6 in autoimmunity and its associated Th1- and Th17-specific responses has not yet been clearly elucidated. We used a prototypical and pathologically relevant Th1/Th17-mediated autoimmune model, that is, experimental autoimmune encephalomyelitis, to assess the role of SLAT/Def6 in autoantigen-specific T cell response.

View Article and Find Full Text PDF

SWAP-70-like adapter of T cells (SLAT) is a recently identified guanine nucleotide exchange factor (GEF) for Cdc42 and Rac1, which is highly expressed in both thymocytes and peripheral T cells. Here, we present and discuss findings resulting from biochemical and genetic analyses aimed at unveiling the role of SLAT in CD4+ T-cell development, activation, and T-helper (Th) cell differentiation. Slat(-/-) mice display a developmental defect at one of the earliest stages of thymocyte differentiation, the double negative 1 (DN1) stage, leading to decreased peripheral T-cell numbers.

View Article and Find Full Text PDF

SLAT (SWAP-70-like adaptor protein of T cells) is an adaptor protein expressed in cells of the hematopoietic system. SLAT interacts with and alters the function of small GTPase Rac1 in fibroblasts. In these nonhematopoietic models, the SLAT-Rac interaction leads to changes in F-actin and causes cytoskeletal reorganization.

View Article and Find Full Text PDF

SWAP-70-like adaptor of T cells (SLAT) is a guanine nucleotide exchange factor for Rho GTPases that regulates the development of T helper 1 (Th1) and Th2 cell inflammatory responses by controlling the Ca(2+)-NFAT signaling pathway. However, the mechanism used by SLAT to regulate these events is unknown. Here, we report that the T cell receptor (TCR)-induced translocation of SLAT to the immunological synapse required Lck-mediated phosphorylation of two tyrosine residues located in an immunoreceptor tyrosine-based activation motif-like sequence but was independent of the SLAT PH domain.

View Article and Find Full Text PDF

SWAP-70-like adapter of T cells (SLAT) is a novel guanine nucleotide exchange factor for Rho GTPases that is upregulated in Th2 cells, but whose physiological function is unclear. We show that SLAT(-/-) mice displayed a developmental defect at one of the earliest stages of thymocyte differentiation, the double-negative 1 (DN1) stage, leading to decreased peripheral T cell numbers. SLAT(-/-) peripheral CD4(+) T cells demonstrated impaired TCR/CD28-induced proliferation and IL-2 production, which was rescued by the addition of exogenous IL-2.

View Article and Find Full Text PDF

Vav proteins play a critical role in T cell activation and proliferation by promoting cytoskeleton reorganization, transcription factor activation, and cytokine production. In this study, we investigated the role of Vav in T cell cycle progression. TCR/CD28-stimulated Vav1(-/-) T cells displayed a cell cycle block at the G0-G1 stage, which accounted for their defective proliferation.

View Article and Find Full Text PDF

Formation of an immunological synapse (IS) between APCs and T CD4(+) lymphocytes is a key event in the initiation and the termination of the cognate immune response. We have analyzed the contribution of the APC to IS formation and report the implication of the actin cytoskeleton, the signaling proteins and the lipid rafts of B lymphocytes. Recruitment of MHC class II molecules to the IS is concomitant with actin cytoskeleton-dependent B cell raft recruitment.

View Article and Find Full Text PDF

Antigen presentation to T lymphocytes has been characterized extensively in terms of T lymphocyte activation and eventual cell death. In contrast, little is known about the consequences of antigen presentation for the antigen-presenting cell (APC). We have determined the outcome of major histocompatibility complex class II-restricted peptide presentation to a specific T cell.

View Article and Find Full Text PDF

We investigated differentiation of CD4 T cells responding to Ag presented by bone marrow-derived dendritic cells (DC) in association with MHC class II (MHC II) molecules. Peptides encapsulated in liposomes opsonized by IgG were taken up by endocytosis. MHC II-peptide-specific T cells responding to this Ag were polarized to a Th1 cytokine profile in a CD40-, CD28-, MyD88-, and IL-12-dependent manner.

View Article and Find Full Text PDF

The annual meeting of the Société Française d'immunologie (SFI) took place in Strasbourg 27-29th November 2002. The following is a brief synopsis of the key points from presentations in the plenary sessions and symposia, and demonstrates the diversity of subjects addressed in the course of this conference.

View Article and Find Full Text PDF

In addition to their role in antigen presentation, major histocompatibility complex (MHC) class II molecules have been widely described as signaling proteins in diverse antigen-presenting cells (APCs) including B cells and dendritic cells. By contrast, little is known of the signaling function of MHC class II molecules expressed in solid tumors. We describe the functional organization and signaling ability of I-Ak expressed in a sarcoma, and report the recruitment of I-Ak to lipid rafts after MHC class II engagement.

View Article and Find Full Text PDF