98%
921
2 minutes
20
Background: It has been claimed that by using different washing methods, the sperms can be separated according to size, motility, density, chromosomal content and surface markings and charge. These methods also reduce sperm chromatin deficiencies and screen the sperms before applying in assisted reproduction techniques.
Objective: This study compared simple density gradient methods and a combined method with albumin density gradient and PureSperm separation (alb/PureSperm) for sex preselection by double fluorescence in situ hybridization (FISH) versus chromomycin A3 staining to determine chromatin integrity.
Materials And Methods: 30 normal semen samples were prepared with PureSperm, albumin gradients and alb/PureSperm. All samples were then stained by FISH and chromomycin A3. The results were compared with SPSS 11.5 and the Kruskal-Wallis test.
Results: The proportion of X-bearing spermatozoa by PureSperm separation (47.58±5.67) and Y-bearing spermatozoa by albumin gradient (46.13±3.83) methods were slightly higher than in putative normal sperm samples (1:1), but there were no significant differences in the X- or Y- bearing spermatozoa counts among the three methods. Albumin gradient separation tended to underestimate abnormal spermatozoa compared to PureSperm and combined alb/PureSperm.
Conclusion: Routine separation methods slightly enriched X- or Y- bearing spermatozoa, but the differences were not significant for clinical purposes. The combined alb/PureSperm method had no advantages for assessing sex ratio or chromatin integrity compared to simpler gradient methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169681 | PMC |
Magn Reson Chem
September 2025
Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.
View Article and Find Full Text PDFInorg Chem
September 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
Confronting the dual challenges of carbon neutrality and sustainable energy, photocatalytic CO reduction requires precise control over product selectivity. This study demonstrates that surface hydroxyl (-OH) density serves as a molecular switch for reaction pathways in graphene oxide/cobalt tetraphenylporphyrin (GO/CoTPP) hybrids. By tuning the reduction degree of GO supports via gradient hydrazine hydrate treatment (0-85%), we constructed catalysts with controlled -OH concentrations.
View Article and Find Full Text PDFBioresour Technol
September 2025
Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China. Electronic address:
Microbial desalination cells (MDCs) have traditionally employed simplified NaCl solutions as feedwater for synchronous desalination and bioenergy recovery. Nevertheless, the specific mechanisms by which MDCs remove complex multi-ions from saline wastewater remain obscure. This study thoroughly investigated ion migration, bioelectrochemical dynamics, and microbial ecological responses across three distinct configurations: monovalent ions - PMDC, divalent cations - CMDC and anions - AMDC.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Institute of Orthopedic Surgery, Xijing Hospital, Air force Medical University;
Bone tissue is an important load-bearing organ of the human body. Moderate exercise enhances bone mass through mechanical loading, while high-intensity exercise may suppress it. Infrared therapy improves circulation, reduces pain/inflammation, and aids tissue repair.
View Article and Find Full Text PDFNano Lett
September 2025
State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs.
View Article and Find Full Text PDF