Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We evaluated 23 tree tomato (Solanum betaceum) accessions from five cultivar groups and one wild relative (Solanum cajanumense) for 26 composition traits. For all traits we found highly significant differences (P<0.001) among the materials studied. The high diversity found within S. betaceum for composition traits was matched by a high diversity within each of the cultivar groups. We found that sucrose and citric acid were the most important soluble sugar and organic acid, respectively, in tree tomato. Fruit in the anthocyanin pigmented (purple) group had a carotenoid content similar to that in the yellow-orange cultivar groups. Total phenolic content was significantly correlated (r=0.8607) with antioxidant activity. Analyses of mineral content showed that tree tomato is a good source of K, Mg, and Cu. Multivariate principal components analysis (PCA) confirmed that an important diversity exists within each cultivar group. The results we have obtained indicate that the high diversity found within the tree tomato could be exploited for selection and breeding for developing the tree tomato as a commercial crop.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2014.07.152DOI Listing

Publication Analysis

Top Keywords

tree tomato
8
tomato solanum
8
solanum betaceum
8
diversity chemical
4
chemical composition
4
composition collection
4
collection varietal
4
varietal types
4
types tree
4
betaceum cav
4

Similar Publications

The utilization of arbuscular mycorrhizal fungi (AMF) and spp. correlates with improved plant nutrition and the stimulation of systemic plant defenses in response to pathogen challenges. Nonetheless, studies examining the effects of AMF colonization and the foliar application of the isolate Tvd44 on viral infection are limited.

View Article and Find Full Text PDF

Global warming poses significant challenges to plant physiology, particularly affecting bud dormancy and fruit yields in perennial fruit trees. JMJ-C domain containing histone demethylases, a family of enzymes that modulate gene expression by removing methyl groups from histone tails, have been the subject of extensive research in model plants like Arabidopsis and tomato. However, their functions in fruit trees, remains largely unexplored.

View Article and Find Full Text PDF

Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology of crops. The strain H5 isolated from saline-alkali soil in Bachu of Xinjiang was studied through whole-genome analysis, functional annotation, and plant growth-promoting, salt-tolerant trait gene analysis.

View Article and Find Full Text PDF

LBD transcription factors play pivotal roles in regulating adventitious root formation in plants, with two key LBD genes, SBRL and BSBRL, constituting the highly conserved superlocus first reported in tomato. However, the members of LBD genes regulating adventitious root formation in peach trees have not yet been identified, and the regulatory mechanisms of the two key LBD genes remain to be elucidated. In this study, through genome-wide analysis of the LBD gene family in peach, we identified nine LBD genes clustered with these reported adventitious root-related LBDs, but only three superlocus-associated LBD genes (PpBSBRL, PpSBRL1, and PpSBRL2) revealed significant upregulation in expression level during the induction phase of peach adventitious rooting.

View Article and Find Full Text PDF

Rapid population flux in bacterial spot xanthomonads during a transition in dominance between two genotypes in consecutive tomato production seasons and identification of a new species sp. nov.

Plant Dis

August 2025

Oklahoma State University, Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma State University, 127 Noble Research Center, Stillwater, Oklahoma, United States, 74078-1010;

In the bacterial spot of tomato disease complex, Xanthomonas euvesicatoria pv. perforans (Xep) is known to outcompete X. euvesicatoria pv.

View Article and Find Full Text PDF