Enamel Matrix Derivative has No Effect on the Chondrogenic Differentiation of Mesenchymal Stem Cells.

Front Bioeng Biotechnol

Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Center, Rotterdam , Netherlands.

Published: September 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Treatment of large bone defects due to trauma, tumor resection, or congenital abnormalities is challenging. Bone tissue engineering using mesenchymal stem cells (MSCs) represents a promising treatment option. However, the quantity and quality of engineered bone tissue are not sufficient to fill large bone defects. The aim of this study was to determine if the addition of enamel matrix derivative (EMD) improves in vitro chondrogenic priming of MSCs to ultimately improve in vivo MSC mediated endochondral bone formation.

Methods: MSCs were chondrogenically differentiated in 2.0 × 10(5) cell pellets in medium supplemented with TGFβ3 in the absence or presence of 1, 10, or 100 μg/mL EMD. Samples were analyzed for gene expression of RUNX2, Col II, Col X, and Sox9. Protein and glycoaminoglycan (GAG) production were also investigated via DMB assays, histology, and immunohistochemistry. Osteogenic and adipogenic differentiation capacity were also assessed.

Results: The addition of EMD did not negatively affect chondrogenic differentiation of adult human MSCs. EMD did not appear to alter GAG production or expression of chondrogenic genes. Osteogenic and adipogenic differentiation were also unaffected though a trend toward decreased adipogenic gene expression was observed.

Conclusion: EMD does not affect chondrogenic differentiation of adult human MSCs. As such the use of EMD in combination with chondrogenically primed MSCs for periodontal bone tissue repair is unlikely to have negative effects on MSC differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151337PMC
http://dx.doi.org/10.3389/fbioe.2014.00029DOI Listing

Publication Analysis

Top Keywords

chondrogenic differentiation
12
bone tissue
12
enamel matrix
8
matrix derivative
8
mesenchymal stem
8
stem cells
8
large bone
8
bone defects
8
gene expression
8
gag production
8

Similar Publications

CXXC Finger Protein 1 drives BMP signaling and progenitor cell differentiation during limb development.

Dev Biol

September 2025

Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115 USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115 USA; Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, MA 02138 USA. Electronic address:

The mechanisms mediating endochondral bone formation remain incompletely understood. Here, we show that CXXC Finger Protein 1 (CFP1) is required for the onset of chondrogenesis during forelimb development. CFP1-deficient mesenchymal progenitor cells (LMPs) retain an immature molecular signature with elevated FGF and SHH signaling and repressed BMP signaling, in part, due to (1) reduced expression of type I BMP receptors, (2) reduced Smad1 protein levels and (3) an altered extracellular niche.

View Article and Find Full Text PDF

MHC compatibility influences the interaction between different types of equine mesenchymal stem/stromal cells and the local immune response.

Res Vet Sci

September 2025

Laboratorio de Genética Bioquímica LAGENBIO - Instituto de Investigación Sanitaria de Aragón (IIS) - Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain; Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain. El

The allogeneic administration of equine mesenchymal stem/stromal cells (MSCs) has numerous advantages over autologous therapy, but their interactions with the patient's immune system need to be further elucidated. These interactions can be influenced by factors such as the compatibility between donor-receptor for the major histocompatibility complex (MHC) and by the MHC expression levels, which can change under different conditions like inflammatory exposure and chondrogeneic differentiation. In this study, we evaluated the local immune response induced by chondrogeneically differentiated (MSC-chondro), pro-inflammatory primed (MSC-primed) and basal (MSC-naïve) MSCs, and how this response changes the immunomodulatory and immunogenic profiles of MSCs in vivo.

View Article and Find Full Text PDF

Kartogenin-encapsulated self-healing injectable hydrogel based on hyaluronic acid and chitosan derivative for use as viscosupplementation in knee osteoarthritis.

Int J Biol Macromol

September 2025

Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai Univ

Early osteoarthritis treatment often relies on viscosupplementation via intra-articular injections, which are limited by inflammation risk and poor cartilage restoration. To address these issues, self-healing hydrogels provide a promising alternative because of their ability to recover structure after mechanical stress. This study reports an injectable self-healing hydrogel composed of N-succinyl chitosan (NSC) and hyaluronic dialdehyde (HAD), combined with kartogenin (KGN), synthesized under mild conditions via Schiff base reactions.

View Article and Find Full Text PDF

This study aimed to evaluate the effects of cell-derived (BMSCs and chondrocytes) extracellular matrix (ECM) scaffolds incorporating bone marrow aspirate concentrate (BMAC) on cartilage regeneration, and to determine whether BMAC-loaded BMSCs-derived (BM-d) ECM scaffolds were comparable to chondrocytes-derived (Ch-d) ECM scaffolds in terms of cartilage regeneration. In this study, BMSCs and chondrocytes were harvested and isolated, then developed into BM-d and Ch-d ECM scaffolds. The scaffolds were fully immersed in BMAC and subsequently utilized for inducing chondrogenic differentiation in vitro and cartilage regeneration in vivo.

View Article and Find Full Text PDF

Traumatic heterotopic ossification (THO) is a pathological process characterized by ectopic bone formation in soft tissues following trauma or surgical interventions, leading to pain, swelling, and restricted mobility. Current therapeutic strategies remain limited, with surgical excision often associated with recurrence and complications. Triptolide (TP), a diterpenoid triepoxide derived from Tripterygium wilfordii, has potent anti-inflammatory and immunomodulatory effects, making it a promising candidate for THO treatment.

View Article and Find Full Text PDF