Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intramolecular hydrogen bond (HB) formation was analyzed in the model compounds N-(2-benzoylphenyl)acetamide, N-(2-benzoylphenyl)oxalamate and N1,N2-bis(2-benzoylphenyl)oxalamide. The formation of three-center hydrogen bonds in oxalyl derivatives was demonstrated in the solid state by the X-ray diffraction analysis of the geometric parameters associated with the molecular structures. The solvent effect on the chemical shift of H6 [δH6(DMSO-d6)-δH6(CDCl3)] and Δδ(ΝΗ)/ΔT measurements, in DMSO-d6 as solvent, have been used to establish the energetics associated with intramolecular hydrogen bonding. Two center intramolecular HB is not allowed in N-(2-benzoylphenyl)acetamide either in the solid state or in DMSO-d6 solution because of the unfavorable steric effects of the o-benzoyl group. The estimated ΔHº and ΔSº values for the hydrogen bonding disruption by DMSO-d6 of 28.3(0.1) kJ·mol-1 and 69.1(0.4) J·mol-1·K-1 for oxalamide, are in agreement with intramolecular three-center hydrogen bonding in solution. In the solid, the benzoyl group contributes to develop 1-D and 2-D crystal networks, through C-H∙∙∙A (A = O, π) and dipolar C=O∙∙∙A (A = CO, π) interactions, in oxalyl derivatives. To the best of our knowledge, this is the first example where three-center hydrogen bond is claimed to overcome steric constraints.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270700PMC
http://dx.doi.org/10.3390/molecules190914446DOI Listing

Publication Analysis

Top Keywords

solid state
12
oxalyl derivatives
12
three-center hydrogen
12
hydrogen bonding
12
hydrogen bonds
8
model compounds
8
intramolecular hydrogen
8
hydrogen bond
8
hydrogen
7
solid
4

Similar Publications

Soda biscuit-like Ag-ZnO@ZIF-8 heterostructures were successfully synthesized using a secondary hydrothermal method for the first time, demonstrating exceptional ethylene glycol sensing performance. The sample (2-Methylimidazol (MeIm) concentration of 0.04 g) exhibits a remarkable response value of 1325.

View Article and Find Full Text PDF

Durotaxis is a driver and potential therapeutic target in lung fibrosis and metastatic pancreatic cancer.

Nat Cell Biol

September 2025

Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.

View Article and Find Full Text PDF

Fluorinated Imidazolidinium Cations as a Fluorine-Lean Interface Repairing Agent for Li-Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.

Li-metal batteries promise ultrahigh energy density, but their application is limited by Li-dendrite growth. Theoretically, fluorine-containing anions such as bis(fluorosulfonyl)imide (FSI) in electrolytes can be reduced to form LiF-rich solid-electrolyte interphases (SEIs) with high Young's modulus and ionic conductivity that can suppress dendrites. However, the anions migrate toward the cathode during the charging process, accompanied by a decrease in the concentration of interfacial anions near the anode surface.

View Article and Find Full Text PDF

Novel Thermal Modification of Phosphate Tailings for Enhanced Heavy Metals Immobilization in Soil.

Environ Res

September 2025

State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:

Recent interest in amendments derived from industrial by-products has highlighted their potential for both resource recycling and heavy metal remediation. Phosphate tailings (PT), primarily dolomite-based solid waste with low utilization rates, offer a promising yet underexplored solution. This study pioneers the thermal modification of PT into a novel amendment, thermally modified phosphate tailings (TPT), to assess its adsorption performance, underlying mechanisms, and effectiveness in immobilizing heavy metals in soils.

View Article and Find Full Text PDF

Low-carbon competitiveness of cities in solid waste disposal systems: Spatial and temporal variations in greenhouse gas emissions in the Yangtze River Delta.

Waste Manag

September 2025

Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

As one of the major sources of greenhouse gas (GHG) emissions, the municipal solid waste (MSW) management system was regarded as a key contributor to the construction of a low-carbon society. Understanding the evolution of waste treatment facilities and the corresponding GHG emissions was essential for assessing the low-carbon competitiveness of local communities. In this study, facility-level data were used to estimate GHG emissions from the waste management system in the Yangtze River Delta (YRD) and analyze their temporal and spatial variations.

View Article and Find Full Text PDF