A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Integration of RAFT polymerization and click chemistry to fabricate PAMPS modified macroporous polypropylene membrane for protein fouling mitigation. | LitMetric

Integration of RAFT polymerization and click chemistry to fabricate PAMPS modified macroporous polypropylene membrane for protein fouling mitigation.

J Colloid Interface Sci

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 1 East Beijing Road, Wuhu, Anhui 241000, China. Electronic address:

Published: December 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) grafting-to method was used to tether alkyne-terminated poly(2-acrylamido-2-methyl propane sulfonic acid) (alkyne-PAMPS) to the azide functionalized macroporous polypropylene membrane (MPPM-N3). Alkyne-PAMPS was synthesized by the reversible addition-fragmentation chain transfer polymerization (RAFT) of AMPS with an alkyne-terminated trithiocarbonate served as a chain transfer agent. The combination of RAFT polymerization with click chemistry to graft polymer to the surface of polypropylene membrane produced relatively high grafting density and controllable grafting chain length. The structure and composition of the modified and unmodified MPPM surfaces were analyzed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR), X-ray photoelectron spectroscopy (XPS); field emission scanning electron microscopy (FE-SEM) was employed to observe the morphological changes on the membrane surface. The permeation performances were tested by the filtration of protein dispersion. The experimental results show that with the grafting degree going up, the relative flux reduction decreases, while the relative flux recovery ratio increases, and the protein fouling is obviously mitigated by tethering PAMPS to the membrane surface. The modified membranes can be potentially applied for fouling reduction during the filtration of proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2014.08.013DOI Listing

Publication Analysis

Top Keywords

polypropylene membrane
12
raft polymerization
8
polymerization click
8
click chemistry
8
macroporous polypropylene
8
protein fouling
8
chain transfer
8
membrane surface
8
relative flux
8
membrane
5

Similar Publications