Correction of the tip convolution effects in the imaging of nanostructures studied through scanning force microscopy.

Nanotechnology

Instituto de ciencia molecular (ICMol) de la Universidad de Valencia, c/ Catedrático José Beltrán Martínez num. 2, E46980 Paterna, Spain.

Published: October 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

AFM images are always affected by artifacts arising from tip convolution effects, resulting in a decrease in the lateral resolution of this technique. The magnitude of such effects is described by means of geometrical considerations, thereby providing better understanding of the convolution phenomenon. We demonstrate that for a constant tip radius, the convolution error is increased with the object height, mainly for the narrowest motifs. Certain influence of the object shape is observed between rectangular and elliptical objects with the same height. Such moderate differences are essentially expected among elongated objects; in contrast they are reduced as the object aspect ratio is increased. Finally, we propose an algorithm to study the influence of the size, shape and aspect ratio of different nanometric motifs on a flat substrate. Indeed, with this algorithm, convolution artifacts can be extended to any kind of motif including real surface roughness. From the simulation results we demonstrate that in most cases the real motif's width can be estimated from AFM images without knowing its shape in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/25/39/395703DOI Listing

Publication Analysis

Top Keywords

convolution effects
8
afm images
8
aspect ratio
8
correction convolution
4
effects imaging
4
imaging nanostructures
4
nanostructures studied
4
studied scanning
4
scanning force
4
force microscopy
4

Similar Publications

DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction.

Front Genet

August 2025

Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.

RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.

View Article and Find Full Text PDF

Background And Objective: The early detection of breast cancer plays a critical role in improving survival rates and facilitating precise medical interventions. Therefore, the automated identification of breast abnormalities becomes paramount, significantly enhancing the prospects of successful treatment outcomes. To address this imperative, our research leverages multiple modalities such as MRI, CT, and mammography to detect and screen for breast cancer.

View Article and Find Full Text PDF

Deep learning approaches have improved disease diagnosis efficiency. However, AI-based decision systems lack sufficient transparency and interpretability. This study aims to enhance the explainability and training performance of deep learning models using explainable artificial intelligence (XAI) techniques for brain tumor detection.

View Article and Find Full Text PDF

Dynamic network compression via probabilistic channel pruning.

Neural Netw

September 2025

Dept. of CSE, Konkuk University, Seoul, 05029, Republic of Korea. Electronic address:

Neural network compression problems have been extensively studied to overcome the limitations of compute-intensive deep learning models. Most of the state-of-the-art solutions in this context are based on network pruning that identify and remove unimportant weights, filters or channels. However, existing methods often lack actual speedup or require complex pruning criteria and additional training (fine-tuning) overhead.

View Article and Find Full Text PDF

Spatial transcriptomics (ST) reveals gene expression distributions within tissues. Yet, predicting spatial gene expression from histological images still faces the challenges of limited ST data that lack prior knowledge, and insufficient capturing of inter-slice heterogeneity and intra-slice complexity. To tackle these challenges, we introduce FmH2ST, a foundation model-based method for spatial gene expression prediction.

View Article and Find Full Text PDF