Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prevention of renal fibrosis is an important therapeutic strategy in the treatment of obstructive nephropathy. The purpose of the present study was to identify whether the combination of two natural plant-derived flavanoids, quercetin and hyperoside (QH), could inhibit renal fibrosis in the model of unilateral ureteral obstruction (UUO) in rats. QH mixtures (1:1) were fed to Wistar rats, and UUO ligation was performed on all the rats with the exception of the sham group. Masson's trichrome staining was used for interstitial fibrosis, while immunohistochemistry and western blot analysis were used to detect the expression of α-smooth muscle actin (SMA) and fibronectin (FN). In the QH group, the expression of SMA and FN was significantly lower than that in the untreated UUO group. In addition, QH administration significantly inhibited the SMA and FN expression of mesangial cells induced by interleukin-1β. Consequently, it was evident that combinational QH therapy prevented UUO-induced renal fibrosis. Based on these findings, the combinatorial intervention of phytomedicine may present an improved treatment strategy for renal fibrotic disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113542PMC
http://dx.doi.org/10.3892/etm.2014.1841DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
16
quercetin hyperoside
8
unilateral ureteral
8
ureteral obstruction
8
renal
5
fibrosis
5
protective effects
4
effects quercetin
4
hyperoside renal
4
rats
4

Similar Publications

Background: IgA nephropathy is a disease with a highly variable natural history, for which there is an increasing understanding of the role of complement activation in its pathogenesis and progression. We aimed to assess the clinical and prognostic implications of C4d staining in the kidney biopsy of IgA nephropathy patients.

Methods: This was a retrospective observational study wherein the medical records of IgA nephropathy patients were reviewed and baseline characteristics, kidney biopsy findings, treatment response and follow-up data were noted.

View Article and Find Full Text PDF

Objective: To explore the impact of Tripterygium wilfordii glycosides (TWG) on glomerulosclerosis within a rat model of chronic kidney disease (CKD), as well as the role of the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway in this mechanism.

Methods: Twenty-four clean Sprague-Dawley rats were divided into Sham group (n = 8), model group (n = 8) and TWG group (n = 8). Adriamycin nephropathy (ADRN) rat model was established by jugular vein injection of adriamycin (ADR).

View Article and Find Full Text PDF

Endothelial-to-mesenchymal transition (EndMT) is a critical contributor of renal fibrosis in diabetic kidney disease (DKD). Asiatic acid (AA), a natural triterpenoid compound, exhibits notable endothelial protective and anti-fibrotic properties; however, its impact on EndMT in DKD remains unclear. This study aimed to investigate the therapeutic effect of AA against EndMT in DKD and the underlying mechanisms.

View Article and Find Full Text PDF

Peritoneal Dialysis (PD) requires a healthy and functional peritoneal membrane for adequate ultrafiltration and fluid balance, making it a vital treatment for patients with end-stage renal disease (ESRD). The spectrum of PD-associated peritoneal fibrosis encompasses a diverse range of collective mechanisms: peritoneal fibrogenesis, epithelial to mesenchymal transition (EMT), peritonitis, angiogenesis, sub-mesothelial immune cells infiltration, and collagen deposition in the sub-mesothelial compact zone of the membrane that accompany deteriorating membrane function. In this narrative review, we summarize the repertoire of current knowledge about the structure, function, and pathophysiology of the peritoneal membrane, focusing on biomolecular mechanisms and signalling pathways that potentiate the development and progression of peritoneal fibrosis.

View Article and Find Full Text PDF

Fibroblasts can be transformed into myofibroblasts under pro-fibrotic conditions, which are characterized by increased contractility and reduced matrix degradation. The relationship between contractile activity and matrix degradation is not fully understood. To mimic physiological conditions, fibroblasts were cultured on a collagen gel with low rigidity.

View Article and Find Full Text PDF