Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The study of particle laden interfaces has increased significantly due to the increasing industrial use of particle stabilized foams and Pickering emulsions, whose bulk rheology and stability are highly dependent on particle laden interface's interfacial rheology, which is a function of interfacial microstructure. To understand the physical mechanisms that dictate interfacial rheology of particle laden interfaces requires correlating rheology to microstructure. To achieve this goal, a double wall ring interfacial rheometer has been modified to allow real time, simultaneous interfacial visualization and shear rheology measurements. The development of this tool is outlined, and its ability to provide novel and unique measurements is demonstrated on a sample system. This tool has been used to examine the role of microstructure on the steady shear rheology of densely packed, aggregated particle laden interfaces at three surface concentrations. Through examination of the rheology and analysis of interfacial microstructure response to shear, a transition from shear thinning due to aggregated cluster breakup to yielding at a slip plane within the interface has been identified. Interestingly, it is found that aggregated interfaces transition to yielding well before they reached a jammed state. Furthermore, these systems undergo significant shear induced order when densely packed. These results indicate that the mechanics of these interfaces are not simply jammed or unjammed and that the interfacial rheology relationship with microstructure can give us significant insight into understanding how to engineer particle laden interfaces in the future. By examining both rheology and microstructure, the mechanisms that dictate observed rheology are now understood and can be used to predict and control the rheology of the interface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la502329sDOI Listing

Publication Analysis

Top Keywords

particle laden
24
laden interfaces
20
interfacial rheology
16
rheology
12
rheology microstructure
12
simultaneous interfacial
8
aggregated particle
8
double wall
8
wall ring
8
interfacial
8

Similar Publications

Multimodal bioprinting of pigmented skin with algorithm-tuned control.

Biomater Adv

September 2025

Key Laboratory of Artificial Intelligence & Micro Nano Sensors, Shanxi Province, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, C

This study addresses critical technical challenges in fabricating functional pigmented skin models via 3D bioprinting through the synergistic integration of droplet-based deposition and precision motion control. A hybrid bioprinting strategy was developed to create multilayer biomimetic architectures: the dermal layer was fabricated through extrusion of gelatin methacryloyl-polyacrylamide (GelMA-PAM) composites, while the epidermal layer incorporated precisely patterned melanocyte-laden GelMA-PAM arrays deposited via microvalve technology, subsequently solidified and populated with keratinocytes. To enhance printing reliability, a fractional-order proportional-integral control system optimized through particle swarm optimization (PSO-FOPI) was implemented, significantly improving motor speed regulation and positioning accuracy.

View Article and Find Full Text PDF

Alginate-encapsulated ZIF-67 composite gel spheres for enhanced tetracycline removal and fixed-bed application.

Colloids Surf B Biointerfaces

December 2025

College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing 401331, China. Electronic address:

The pervasive accumulation of tetracycline (TC) in aquatic ecosystems poses severe ecological and health threats, yet conventional technologies rarely achieve reliable removal under continuous-flow conditions. To overcome the intrinsic brittleness, aggregation and leaching of powdered ZIF-67, this study developed novel alginate-encapsulated MOF composite gel spheres (ALG/ZIF-67) via in-situ crystallization. This simple strategy generates hierarchical pores, anchors Co-N active sites and imparts mechanical robustness without sacrificing adsorption kinetics.

View Article and Find Full Text PDF

Photocatalytic degradation has emerged as a promising approach for addressing dye-laden wastewater from industrial effluents. In this study, a cost-effective cobalt sulfide (CoS) photocatalyst was synthesized via a simple precipitation method and employed for the visible-light-driven degradation of cationic methylene blue (MB) and anionic methyl red (MR) dyes. The as-prepared CoS was characterized using XRD, HR-TEM, FE-SEM, DRS, and PL techniques, revealing a hexagonal phase structure, uniform spherical morphology with particle sizes of 15-22 nm, a mesoporous surface with a BET-specific surface area of 33.

View Article and Find Full Text PDF

Unlabelled: Tuberculosis, a persistent public health challenge worldwide, is transmitted when exhaled (Mtb) particles expelled from an infected individual are inhaled by a susceptible person. To study the adaptation of Mtb during transition between hosts, we developed a transmission simulation system (TSS) that combines controlled pathogen aerosolization and measurement of bioaerosol particle characteristics with in-flight sampling of Mtb and infection of mice by nose-only exposure. Using scattered-light spectrometry, we demonstrated that Mtb aerosol concentrations generated by the TSS better represented human cough than the aerosol concentrations produced by a full-body inhalation exposure system commonly used for Mtb infection of mice.

View Article and Find Full Text PDF

The coffee-ring effect commonly occurs during the evaporation and deposition of particle-laden droplets on the substrates. The resulting deposition pattern is influenced by internal flows, which depend on substrate properties, droplet chemistry, and external conditions. However, in applications such as inkjet printing, drug formulation, and self-assembly, avoiding coffee ring formation is crucial.

View Article and Find Full Text PDF