98%
921
2 minutes
20
With advancing global climate change, the analysis of thermal tolerance and evolutionary potential is important in explaining the ecological adaptation and changes in the distribution of invasive species. To reveal the variation of heat resistance and evolutionary potential in the invasive Mediterranean cryptic species of Bemisia tabaci, we selected two Chinese populations-one from Harbin, N China, and one from Turpan, S China-that experience substantial heat and cold stress and conducted knockdown tests under static high- and low-temperature conditions. ANOVAs indicated significant effects of populations and sex on heat knockdown time and chill coma recovery time. The narrow-sense heritability (h2) estimates of heat tolerance based on a parental half-sibling breeding design ranged from 0.47 ± 0.03 to 0.51 ± 0.06, and the estimates of cold tolerance varied from 0.33 ± 0.07 to 0.36 ± 0.06. Additive genetic variances were significantly different from zero for both heat and cold tolerance. These results suggest that invasive B. tabaci Mediterranean cryptic species possesses a strong ability to respond to thermal selection and develops rapid resistance to climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108406 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103279 | PLOS |
Proc Natl Acad Sci U S A
September 2025
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611.
The origin and phylogenetic distribution of symbiotic associations between nodulating angiosperms and nitrogen-fixing bacteria have long intrigued biologists. Recent comparative evolutionary analyses have yielded alternative hypotheses: a multistep pathway of independent gains and losses of root nodule symbiosis vs. a single gain followed by numerous losses.
View Article and Find Full Text PDFMol Biol Rep
September 2025
ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India.
Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2025
School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.
Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.
View Article and Find Full Text PDFJ Hered
September 2025
Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China.
Nuclear mitochondrial DNA segments (NUMTs), which are mitochondrial DNA fragments integrated into the nuclear genome, serve as markers of evolutionary history. This study aims to enhance the detection and analysis of NUMTs by developing a script named NUMTsearcher. Utilizing the latest chromosome-level genome assemblies from various species, including human, rabbit, and six fish species, the study compares NUMTsearcher's performance against traditional methods such as LAST (Local Alignment Search Tool), BLAST (Basic Local Alignment Search Tool), BLAT (BLAST-Like Alignment Tool), and the pan-mitogenome approach, which integrates mitogenomes from diverse sources to identify fixed NUMTs in the nuclear genome.
View Article and Find Full Text PDFmBio
September 2025
Department of Biology, Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Flanders, Belgium.
Echinocandins, which target the fungal β-1,3-glucan synthase (Fks), are essential for treating invasive fungal infections, yet resistance is increasingly reported. While resistance typically arises through mutations in Fks hotspots, emerging evidence suggests a contributing role of changes in membrane sterol composition due to mutations. Here, we present a clinical case of () in which combined mutations in and , but not alone, appear to confer echinocandin resistance.
View Article and Find Full Text PDF