Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Today, the patch-clamp technique is the main technique in electrophysiology to record action potentials or membrane current from isolated cells, using a patch pipette to gain electrical access to the cell. The common recording modes of the patch-clamp technique are current clamp and voltage clamp. In the current clamp mode, the current injected through the patch pipette is under control while the free-running membrane potential of the cell is recorded. Current clamp allows for measurements of action potentials that may either occur spontaneously or in response to an injected stimulus current. In voltage clamp mode, the membrane potential is held at a set level through a feedback circuit, which allows for the recording of the net membrane current at a given membrane potential.A less common configuration of the patch-clamp technique is the dynamic clamp. In this configuration, a specific non-predetermined membrane current can be added to or removed from the cell while it is in free-running current clamp mode. This current may be computed in real time, based on the recorded action potential of the cell, and injected into the cell. Instead of being computed, this current may also be recorded from a heterologous expression system such as a HEK-293 cell that is voltage-clamped by the free-running action potential of the cell ("dynamic action potential clamp"). Thus, one may directly test the effects of an additional or mutated membrane current, a synaptic current or a gap junctional current on the action potential of a patch-clamped cell. In the present chapter, we describe the dynamic clamp on the basis of its application in cardiac cellular electrophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-1096-0_20DOI Listing

Publication Analysis

Top Keywords

membrane current
16
current clamp
16
action potential
16
current
14
dynamic clamp
12
patch-clamp technique
12
clamp mode
12
potential cell
12
membrane
8
action potentials
8

Similar Publications

Metabolic and immunomodulatory control of type 2 diabetes via generating cellular itaconate reservoirs by inflammatory-targeting gene-therapy nanovesicles.

Trends Biotechnol

September 2025

Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator

Type 2 diabetes (T2D) is characterized by persistent and unresolved tissue inflammation caused by the infiltration and dysregulation of immune cells. Current therapeutics targeting inflammatory immune cells for T2D remain limited. In this study, we analyzed single cell RNA from metabolic organs in T2D, revealing increased macrophage accumulation and a pathogenic macrophage subpopulation defined as NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammatory and metabolically activated macrophages.

View Article and Find Full Text PDF

Molecular basis for regulation of the class I phosphoinositide 3-kinases (PI3Ks), and their targeting in human disease.

Biochim Biophys Acta Mol Cell Biol Lipids

September 2025

Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada; University of Victoria Genome BC Proteomics Centre, Vi

The class I phosphoinositide 3-kinase pathway (PI3K) is a master regulator of cellular growth, and plays essential roles in controlling immune cell function, metabolism, chemotaxis and proliferation. Activation of class I PI3Ks generates the signalling lipid PIP that activates multiple pro-growth signalling pathways. Class I PI3Ks can be activated by multiple plasma membrane stimuli, including G-protein coupled receptors, Ras superfamily GTPases, and receptor tyrosine kinases.

View Article and Find Full Text PDF

Purpose: The purpose of this document is to review current methods for cervical ripening and to summarize the effectiveness of these approaches based on appropriately conducted outcomes-based research. This document focuses on cervical ripening in individuals with term, singleton, vertex pregnancies with membranes intact, because this is the population in whom most studies were conducted. For more information on recommended timing of delivery based on maternal, fetal, and obstetric conditions and on labor management, refer to: American College of Obstetricians and Gynecologists (ACOG) Committee Opinion No.

View Article and Find Full Text PDF

3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.

View Article and Find Full Text PDF

Purpose: Taenia pisiformis cysticerci have been reported in the female reproductive tract of rabbits, and this parasitosis is known to alter reproductive behavior and reduce embryo implantation; however, tissue-based studies relating the immune system to the implantation site during infection have not been previously addressed. Therefore, our research provides new information on the interaction between pregnancy and parasitic infection.

Methods: This study evaluated the recruitment of immune cells in uterine tissue during T.

View Article and Find Full Text PDF