98%
921
2 minutes
20
Study Design: Case series.
Purpose: To describe paraspinal transposition flap for coverage of sacral soft tissue defects.
Overview Of Literature: Soft tissue defects in the sacral region pose a major challenge to the reconstructive surgeon. Goals of sacral wound reconstruction are to provide a durable skin and soft tissue cover adequate for even large sacral defects; minimize recurrence; and minimize donor site morbidity. Various musculocutaneous and fasciocutanous flaps have been described in the literature.
Methods: The flap was applied in 53 patients with sacral soft tissue defects of diverse etiology. Defects ranged in size from small (6 cm×5 cm) to extensive (21 cm×10 cm). The median age of the patients was 58 years (range, 16-78 years).
Results: There was no flap necrosis. Primary closure of donor sites was possible in all the cases. The median follow up of the patients was 33 months (range, 4-84 months). The aesthetic outcomes were acceptable. There has been no recurrence of pressure sores.
Conclusions: The authors conclude that paraspinal transposition flap is suitable for reconstruction of large sacral soft tissue defects with minimum morbidity and excellent long term results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068850 | PMC |
http://dx.doi.org/10.4184/asj.2014.8.3.309 | DOI Listing |
J Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.
J Hum Genet
September 2025
Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.
View Article and Find Full Text PDFActa Ortop Mex
September 2025
Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario-Malvarrosa. Valencia, España.
Introduction: subtalar dislocations, typical of high-energy trauma, are classified as medial, lateral, anterior or posterior depending on the deviation of the foot in relation to the talus. Lateral dislocation accounts for 17% of the total and has a worse prognosis. Immediate reduction is required to reduce the risk of sequelae, the incidence of which is around 90%.
View Article and Find Full Text PDFCancer Lett
September 2025
Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Huaian, 223300, Jiangsu Province, China; Key Laboratory of Autoimmune Diseases of Huaian City, Huaian, 223300, Jiangsu Pr
CAR-T cell therapy, as a representative technology in cancer immunotherapy, has demonstrated notable success in the treatment of hematologic malignancies; however, a significant proportion of patients fail to achieve sustained remission. Through the analysis of bone marrow sequencing data prior to CD19 CAR-T cell therapy, we identified cellular adhesion as a pivotal factor influencing clinical outcomes. We developed a model to predict B-ALL treatment efficacy based on the core genes associated with cellular adhesion, which was validated in our clinical cohort.
View Article and Find Full Text PDFBiomater Adv
September 2025
Graduate School of Medical and Dental Science, Institute of Science Tokyo, 15-45 Yushima, Bunkyo, Tokyo, 113-8510, Japan; Advanced Central Research Organization, Teikyo University, 2-11-1, Kaga, Itabashi, Tokyo, 173-8605, Japan.
This review concentrates on the electroactive ceramic biointerfaces inspired by bone piezoelectricity for advanced ceramic biomaterials. Bone generates electrical potentials through the piezoelectric properties of collagen fibrils and apatite minerals under mechanical loading. These electrical signals influence osteoconductivity and regenerative capacity by osteogenic cells.
View Article and Find Full Text PDF