A lock-and-key mechanism for the controllable fabrication of DNA origami structures.

Chem Commun (Camb)

Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.

Published: August 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Controllable fabrication of DNA origami structures was achieved using cationic comb-type copolymers (CCCs) as locks and polyvinyl sulphonic acid (PVS) as a key. A CCC binds to the phosphate backbone of either M13mp18/staples alone or both together and restricts origami folding, while PVS unlocks the CCC, restoring the formation of origami structures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cc02244kDOI Listing

Publication Analysis

Top Keywords

origami structures
12
controllable fabrication
8
fabrication dna
8
dna origami
8
lock-and-key mechanism
4
mechanism controllable
4
origami
4
structures controllable
4
structures achieved
4
achieved cationic
4

Similar Publications

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

Self-assembled DNA nanostructures have been popularly used to develop DNA-based electrochemical sensors by exploiting the nanoscale positioning capability of DNA origami. However, the impact of the electric field on the structural stability of the DNA origami framework and the activity of carried DNA probes remains to be explored. Herein, we employ DNA origami as structural frameworks for reversible DNA hybridization, and develop a single-molecule fluorescence imaging method to quantify electric field effects on DNA conformation and hybridization properties at the single-molecule level.

View Article and Find Full Text PDF

Origami frustration and its influence on energy landscapes of origami assemblies.

Proc Natl Acad Sci U S A

September 2025

Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544.

Harnessing instabilities of multicomponent multistable structural assemblies can potentially lead to scalable and reversible functionalities, which can be enhanced by exploring frustration. For instance, standard Kresling origami cells exhibit nontunable intrinsic energy landscapes determined by their geometry and material properties, limiting their adaptability after fabrication. To overcome this limitation, we introduce frustration to enable fine-tuning of the energy landscape and resulting deformation states.

View Article and Find Full Text PDF

DNA nanostructures with 1D, 2D and 3D for intelligent drug delivery.

J Control Release

September 2025

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China.

Structural DNA nanotechnology has emerged as a powerful tool in modern medicine, offering precise self-assembly and spatial programmability for the design of functional nanocarriers. DNA nanostructures can be categorized into one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) architectures, each with distinct advantages: 1D structures are suited for studying cellular responses to physical cues, 2D structures provide large surface areas for enhanced molecular recognition, and 3D structures enable improved cellular uptake and tissue penetration. Despite their potential, there is still no widespread consensus on the optimal structural design for specific diseases.

View Article and Find Full Text PDF