There have been limited efforts to ligate the staple nicks in DNA origami which is crucial for their stability against thermal and mechanical treatments, and chemical and biological environments. Here, two near quantitative ligation methods are demonstrated for the native backbone linkage at the nicks in origami: i) a cosolvent dimethyl sulfoxide (DMSO)-assisted enzymatic ligation and ii) enzyme-free chemical ligation by CNBr. Both methods achieved over 90% ligation in 2D origami, only CNBr-method resulted in ≈80% ligation in 3D origami, while the enzyme-alone yielded 31-55% (2D) or 22-36% (3D) ligation.
View Article and Find Full Text PDFInvited for the cover of this issue are Prof. Takashi Morii and co-workers at Kyoto University and Ewha Womans University. The cover image depicts the graphical design and atomic force microscopic (AFM) images of the synthesized topologically-interlocked DNA catenane and rotaxanes inside a frame-shaped DNA origami.
View Article and Find Full Text PDFDNA minicircles exist in biological contexts, such as kinetoplast DNA, and are promising components for creating functional nanodevices. They have been used to mimic the topological features of nucleosomal DNA and to probe DNA-protein interactions such as HIV-1 and PFV integrases, and DNA gyrase. Here, we synthesized the topologically-interlocked minicircle rotaxane and catenane inside a frame-shaped DNA origami.
View Article and Find Full Text PDFRecognition-driven modification has been emerging as a novel approach to modifying biomolecular targets of interest site-specifically and efficiently. To this end, protein modular adaptors (MAs) are the ideal reaction model for recognition-driven modification of DNA as they consist of both a sequence-specific DNA-binding domain (DBD) and a self-ligating protein-tag. Coupling DNA recognition by DBD and the chemoselective reaction of the protein tag could provide a highly efficient sequence-specific reaction.
View Article and Find Full Text PDFImplantable microfluidic devices are milestones in developing devices that can measure parameters like ocular pressure and blood glucose level or deliver various components for therapeutic needs or behavioral modification. Researchers are currently focusing on the miniaturization of almost all its tools for a better healthcare platform. Implantable microfluidic devices are a combination of various systems including, but not limited to, microfluidic platforms, reservoirs, sensors, and actuators, implanted inside the body of a living entity (in vivo) with the purpose of directly or indirectly helping the entity.
View Article and Find Full Text PDFNucleic Acids Res
August 2021
The low thermal stability of DNA nanostructures is the major drawback in their practical applications. Most of the DNA nanotubes/tiles and the DNA origami structures melt below 60°C due to the presence of discontinuities in the phosphate backbone (i.e.
View Article and Find Full Text PDFCurr Protoc Nucleic Acid Chem
March 2019
The human genome is highly susceptible to various modifications, lesions, and damage. To analyze lesions and proteins bound to a defined region of the human genome, the genome should be fragmented at desired sites and the region of interest should be isolated. The few available methods for isolating a desired region of the human genome have serious drawbacks and can only be applied to specific sequences or require tedious experimental procedures.
View Article and Find Full Text PDFCurr Protoc Nucleic Acid Chem
March 2019
By combining a pair of pseudo-complementary peptide nucleic acids (pcPNAs) with S1 nuclease, a novel tool to cut DNA at a predetermined site can be obtained. Complementary pcPNAs invade the DNA duplex and base pair to each strand of a target site, creating single-stranded regions that are cleaved by S1 nuclease. The scission site can be freely modulated by the design of pcPNAs.
View Article and Find Full Text PDFScission of the human genome at predetermined sites and isolation of a particular fragment are of great interest for the analysis of lesion/modification sites, in proteomics, and for gene therapy. However, methods for human genome scission and specific fragment isolation are limited. Here, we report a novel one-pot method for the site-specific scission of DNA by using a biotinylated pcPNA/S1 nuclease combination and isolation of a desired fragment by streptavidin-coated magnetic beads.
View Article and Find Full Text PDFCellular metabolism involves complex sequences of organized enzymatic reactions, known as metabolic pathways, that convert substrates into readily usable materials. In nature, these enzymatic complexes are organized in a well-defined manner so that the cascade reactions are more rapid and efficient than they would be if the enzymes were randomly distributed in the cytosol. Development of artificial enzyme cascades that resemble nature's organization of sequentially assembled enzymes is of current interest due to its potential applications, from diagnostics to the production of high-value chemicals.
View Article and Find Full Text PDFTo gain new insights into G-quadruplex-drug interactions, we captured the solution-state structures of the complexes between a drug-like small molecule and a G-hairpin/G-triplex. Our results indicated that the ligand initially binds to the intermediates and induces stepwise folding into a quadruplex.
View Article and Find Full Text PDFChem Commun (Camb)
August 2014
Controllable fabrication of DNA origami structures was achieved using cationic comb-type copolymers (CCCs) as locks and polyvinyl sulphonic acid (PVS) as a key. A CCC binds to the phosphate backbone of either M13mp18/staples alone or both together and restricts origami folding, while PVS unlocks the CCC, restoring the formation of origami structures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2014
We present the direct and single-molecule visualization of the in-pathway intermediates of the G-quadruplex folding that have been inaccessible by any experimental method employed to date. Using DNA origami as a novel tool for the structural control and high-speed atomic force microscopy (HS-AFM) for direct visualization, we captured images of the unprecedented solution-state structures of a tetramolecular antiparallel and (3+1)-type G-quadruplex intermediates, such as G-hairpin and G-triplex, with nanometer precision. No such structural information was reported previously with any direct or indirect technique, solution or solid-state, single-molecule or bulk studies, and at any resolution.
View Article and Find Full Text PDFHIV-1 nucleocapsid proteins (NCps) facilitate remodeling of nucleic acids to fold thermodynamically stable conformations, and thus called nucleic acid chaperones. To date only little is known on the stoichiometry, NCp-NCp interactions, chaperone activity on G-quadruplex formation, and so on. We report here the direct and real-time analysis on such properties of proteolytic intermediate NCp15 and mature NCp7 using DNA origami.
View Article and Find Full Text PDFGuanine-rich oligonucleotides often show a strong tendency to form supramolecular architecture, the so-called G-quadruplex structure. Because of the biological significance, it is now considered to be one of the most important conformations of DNA. Here, we describe the direct visualization and single-molecule analysis of the formation of a tetramolecular G-quadruplex in KCl solution.
View Article and Find Full Text PDFJ Am Chem Soc
January 2013
Analogous to the biologically abundant protein-based linear molecular machines that translocate along their target surface, we have recently constructed the DNA-based synthetic molecular motors that effect linear movement or navigate a network of tracks on a DNA origami substrate. However, a DNA-based molecular machine with rotary function, analogous to rotary proteins, is still unexplored. Here, we report the construction of a rotary motor based on the B-Z conformational transition of DNA and the direct and real-time observation of its function within a frame-shaped DNA origami.
View Article and Find Full Text PDFChem Commun (Camb)
January 2013
We have developed a new strategy to control the two-dimensional (2D) crystallization of DNA origami by introducing loops on the surface and aligning them in various orientations. Among the orientations tested, vertically connected loops successfully produced the 2D crystal lattice on a micrometer scale, while all other orientations failed.
View Article and Find Full Text PDFChem Commun (Camb)
October 2012
We describe asymmetric intramolecular Friedel-Crafts alkylations with a DNA-based hybrid catalyst and propose a plausible binding model. This study shows promise for studying relationships between the helical chirality of DNA and enantioselectivity of the chemical reaction.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
November 2012
Proteins are dynamic in nature, work at the single-molecule level, and facilitate several biological functions. The structure of a protein is closely associated with its function; thus, a large number of structural analyses of proteins were performed using techniques such as X-ray crystallography and NMR. Although these methods provide structural information, they often fail because of difficulties in crystallizing the proteins that are complexed with other biomolecules.
View Article and Find Full Text PDFDNA origami is an emerging technology for designing defined two- and three-dimensional (2D and 3D) DNA nanostructures. Here, we report an introductory practical guide with step-by-step experimental details for the design and synthesis of origami structures, and their size expansion in 1D and 2D space by means of self-assembly.
View Article and Find Full Text PDFDuring the last two decades, scientists have developed various methods that allow the detection and manipulation of single molecules, which have also been called "in singulo" approaches. Fundamental understanding of biochemical reactions, folding of biomolecules, and the screening of drugs were achieved by using these methods. Single-molecule analysis was also performed in the field of DNA nanotechnology, mainly by using atomic force microscopy.
View Article and Find Full Text PDFHeat tolerance of DNA origami structures has been improved about 30 °C by photo-cross-linking of 8-methoxypsoralen. To demonstrate one of its applications, the cross-linked origami were used for higher-temperature self-assembly, which markedly increased the yield of the assembled product when compared to the self-assembly of non-cross-linked origami at lower-temperature. By contrast, at higher-temperature annealing, native non-cross-linked tiles did not self-assemble to yield the desired product; however, they formed a nonspecific broken structure.
View Article and Find Full Text PDFTwo-dimensional self-assembly of DNA origami structures was carried out using a connector that has connection sites at all four edges. By utilizing this four-way connector, five and eight origami monomers were assembled to form a cruciate and a hollow square structure, respectively.
View Article and Find Full Text PDFWe demonstrate a novel strategy of self-assembly to scale up origami structures in two-dimensional (2D) space using multiple origami structures, named "2D DNA jigsaw pieces", with a specially designed shape. For execution of 2D self-assembly along the helical axis (horizontal direction), sequence-programmed tenon and mortise were introduced to promote selective connections via π-stacking interaction, sequence-complementarity, and shape-complementarity. For 2D self-assembly along the helical side (vertical direction), the jigsaw shape-complementarity in the top and bottom edges and the sequence-complementarity of single-stranded overhangs were used.
View Article and Find Full Text PDF