Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons.

J Am Chem Soc

Department of Chemistry and ‡School of Energy and Chemical Engineering and KIER-UNIST Advanced Center for Energy, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 689-798, Republic of Korea.

Published: June 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanostructured carbon materials doped with a variety of heteroatoms have shown promising electrocatalytic activity in the oxygen reduction reaction (ORR). However, understanding of the working principles that underpin the superior ORR activity observed with doped nanocarbons is still limited to predictions based on theoretical calculations. Herein, we demonstrate, for the first time, that the enhanced ORR activity in doped nanocarbons can be correlated with the variation in their nanoscale work function. A series of doped ordered mesoporous carbons (OMCs) were prepared using N, S, and O as dopants; the triple-doped, N,S,O-OMC displayed superior ORR activity and four-electron selectivity compared to the dual-doped (N,O-OMC and S,O-OMC) and the monodoped (O-OMC) OMCs. Significantly, the work functions of these heteroatom-doped OMCs, measured by Kelvin probe force microscopy, display a strong correlation with the activity and reaction kinetics for the ORR. This unprecedented experimental insight can be used to provide an explanation for the enhanced ORR activity of heteroatom-doped carbon materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja503557xDOI Listing

Publication Analysis

Top Keywords

orr activity
16
oxygen reduction
8
reduction reaction
8
nanoscale work
8
work function
8
carbon materials
8
superior orr
8
doped nanocarbons
8
enhanced orr
8
activity
7

Similar Publications

CuCo-Embedded Nitrogen-Doped Carbon as a Bifunctional Catalyst for Efficient Rechargeable Zinc-Ethanol/Air Batteries.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.

The oxygen evolution reaction (OER) in conventional zinc-air batteries (ZABs) involves a complex multielectron transfer process, leading to slow reaction kinetics, high charging voltage, and low energy efficiency. To address these limitations, a zinc-ethanol/air battery (ZEAB) system that strategically replaces the OER with the ethanol oxidation reaction (EOR) possessing a lower thermodynamic potential has been proposed. Herein, a bimetallic catalyst CuCo-embedded nitrogen-doped carbon (CuCo-20%-1), derived from a Cu/Co/Cd co-coordinated metal-organic precursor, is synthesized and exhibits an excellent performance for both EOR and ORR.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) is critical to energy conversion technologies and requires efficient catalysts for superior performance. Herein, nitrogen-doped carbide-derived carbon (N-CDC) catalysts are prepared using novel engineered molecular architectures based on polymer-derived ceramic technology. The obtained catalyst materials show a surface N concentration of >5 wt % and a hierarchically porous structure, resulting in a specific surface area of over 2000 m g.

View Article and Find Full Text PDF

This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal-organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM(HXBHYB)@MOF and their ORR/OER overpotentials.

View Article and Find Full Text PDF

The role of electronic spin in electrocatalysis has led to the emerging field of "spin-dependent electrocatalysis". While spin effects in individual active sites have been well understood, spin coupling among multiple sites remains underexplored in electrocatalysis, which will bring forth new active sites and mechanisms. In this work, we propose a general theory to understand the spin coupling in electrocatalysis.

View Article and Find Full Text PDF