98%
921
2 minutes
20
The naked mole-rat (NMR) is the longest-lived rodent known, with a maximum lifespan potential (MLSP) of >31 years. Despite such extreme longevity, these animals display attenuation of many age-associated diseases and functional changes until the last quartile of their MLSP. We questioned if such abilities would extend to cardiovascular function and structure in this species. To test this, we assessed cardiac functional reserve, ventricular morphology, and arterial stiffening in NMRs ranging from 2 to 24 years of age. Dobutamine echocardiography (3 μg/g ip) revealed no age-associated changes in left ventricular (LV) function either at baseline or with exercise-like stress. Baseline and dobutamine-induced LV pressure parameters also did not change. Thus the NMR, unlike other mammals, maintains cardiac reserve with age. NMRs showed no cardiac hypertrophy, evidenced by no increase in cardiomyocyte cross-sectional area or LV dimensions with age. Age-associated arterial stiffening does not occur since there are no changes in aortic blood pressures or pulse-wave velocity. Only LV interstitial collagen deposition increased 2.5-fold from young to old NMRs (P < 0.01). However, its effect on LV diastolic function is likely minor since NMRs experience attenuated age-related increases in diastolic dysfunction in comparison with other species. Overall, these findings conform to the negligible senescence phenotype, as NMRs largely stave off cardiovascular changes for at least 75% of their MLSP. This suggests that using a comparative strategy to find factors that change with age in other mammals but not NMRs could provide novel targets to slow or prevent cardiovascular aging in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121653 | PMC |
http://dx.doi.org/10.1152/ajpheart.00305.2014 | DOI Listing |
Arterioscler Thromb Vasc Biol
September 2025
Faculty of Medicine, Department of Physiology, University of Iceland, Reykjavik (G.K.).
Biological sex influences the life course development of blood pressure, systemic arterial hypertension, and hypertension-associated complications through neural, hormonal, renal, and epigenetic mechanisms. Sex hormones influence blood pressure regulation through interaction with several main regulatory systems, including the autonomic nervous system, the renin-angiotensin-aldosterone system, endothelin, and renal mechanisms. The modulation of vascular function by sex hormones varies over the lifespan.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2025
Institute of Cardiovascular Diseases and Department of Cardiology, Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu (K.L., H.M., W.J
Background: The estimated glucose disposal rate (eGDR) is a validated surrogate marker of insulin resistance. However, its association with stroke and dementia in nondiabetic populations remains insufficiently investigated.
Methods: This prospective cohort study included nondiabetic participants from the UK Biobank.
Circ Genom Precis Med
September 2025
Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, London, United Kingdom (W.J.Y., M.M.S., J.R., S.v.D., H.R.W., A.T., P.B.M.).
Background: There is a higher prevalence of heart rate corrected QT (QTc) prolongation in patients with diabetes and metabolic syndrome. QT interval genome-wide association studies have identified candidate genes for cardiac energy metabolism, and experimental studies suggest that polyunsaturated fatty acids have direct effects on ion channel function. Despite this, there has been limited study of metabolite concentration relationships with QT intervals.
View Article and Find Full Text PDFBackground: Space exploration has progressed significantly, with increased human presence in orbit, the development of space stations, and the planning of increasingly prolonged missions. However, the space environment poses substantial physiological challenges, particularly for the cardiovascular system. According to NASA's Human Research Program, the five primary risks associated with human spaceflight are: (1) microgravity, (2) ionizing cosmic radiation, (3) isolation and confinement, (4) closed environmental systems, and (5) the great distance from Earth.
View Article and Find Full Text PDFCatheter Cardiovasc Interv
September 2025
Department of Cardiology, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
Background: Asymmetric underexpansion of transcatheter heart valves (THVs), as observed on fluoroscopy, may influence prosthesis function or long-term durability of transcatheter aortic valve implantation (TAVI).
Aims: This study aimed to evaluate the effect of stent frame asymmetry on hemodynamic performance and clinical outcomes in ACURATE neo and neo2 THVs.
Methods: In a retrospective registry, the TAVI asymmetry index was defined as the ratio of the THV stent frame diameter.