Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A series of aryl hydroxamates recently have been disclosed as irreversible inhibitors of kynurenine amino transferase II (KAT II), an enzyme that may play a role in schizophrenia and other psychiatric and neurological disorders. The utilization of structure-activity relationships (SAR) in conjunction with X-ray crystallography led to the discovery of hydroxamate 4, a disubstituted analogue that has a significant potency enhancement due to a novel interaction with KAT II. The use of k inact/K i to assess potency was critical for understanding the SAR in this series and for identifying compounds with improved pharmacodynamic profiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027135PMC
http://dx.doi.org/10.1021/ml300237vDOI Listing

Publication Analysis

Top Keywords

structure-based design
4
design irreversible
4
irreversible human
4
human kat
4
kat inhibitors
4
inhibitors discovery
4
discovery potency-enhancing
4
potency-enhancing interactions
4
interactions series
4
series aryl
4

Similar Publications

The myristoylated preS1 domain (myr-preS1) of the hepatitis B virus (HBV) large surface protein is essential for binding to the receptor protein, Na/taurocholate co-transporting polypeptide (NTCP), and for the subsequent internalization of the virus-receptor complex. NTCP, which is expressed in hepatocytes, plays a physiological role in hepatic bile acid transport. Recent cryo-electron microscopy structures of the myr-preS1-NTCP complex were used to analyze virus-receptor interactions at the molecular level.

View Article and Find Full Text PDF

Potato virus Y (PVY) is one of the most economically detrimental phytoviruses affecting global Solanaceae, possessing challenges in agrochemical control. The structural elucidation of PVY coat protein (CP) offers opportunities for the rational design of CP-targeted antivirals; however, the feasibility of identifying lead compounds via virtual screening remains largely unexplored. Herein, we report the successful case of structure-based virtual screening leveraging PVY CP, enabling the identification of a structurally novel lead with a unique mechanism of action.

View Article and Find Full Text PDF

This review meticulously examines the development, design, and pharmacological assessment of both well known antiviral and antihypertensive medications all time employing new chemical techniques and structure-based drug design to design and synthesize vital therapeutic entities such as aliskiren (renin inhibitor), captopril (a2-ACE-Inhibitor), dorzolamide (inhibitor of carbonic anhydrase) the review demonstrates initial steps regarding the significance of stereoselective synthesis, metal chelating pharmacophores, and rational molecular properties. More importantly, protease inhibitors (i.e.

View Article and Find Full Text PDF

The delta opioid receptor (DOR) is a promising target for developing analgesics with fewer side effects compared to mu opioid receptor (MOR) agonists. However, non-peptidyl DOR-selective agonists remain limited. Using the "message-address" concept in opioid ligand design, we designed and synthesized a series of para-substituted N-cyclopropylmethyl-7α-phenyl-6,14-endoetheno-tetrahydronorthebaines to explore their binding affinity and selectivity for DOR over MOR and kappa opioid receptor (KOR).

View Article and Find Full Text PDF

Improved structure of mouse gasdermin D: a new blueprint for structure-based drug design.

Acta Crystallogr F Struct Biol Commun

October 2025

OMass Therapeutics, Building 4000, Chancellor Court, John Smith Drive, Oxford Business Park, ARC, Oxford OX4 2GX, United Kingdom.

Gasdermin D (GSDMD) is a protein that has gained significant attention in recent years due to its crucial role in inflammatory cell death, particularly pyroptosis. Pyroptosis is a highly inflammatory form of programmed cell death that is triggered by various microbial infections and sterile inflammatory stimuli. GSDMD acts as an executioner molecule in this process, leading to the release of pro-inflammatory cytokines and amplifying the immune response.

View Article and Find Full Text PDF