Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Molecular models for HPMCAS polymer have been developed for molecular dynamics (MD) simulation that attempt to mimic the complex substitution patterns in HPMCAS observed experimentally. These molecular models were utilized to create amorphous HPMCAS solids by cooling of the polymeric melts at different water contents to explore the influence of water on molecular mobility, which plays a critical role in stability and drug release from HPMCAS-based solid matrices. The densities found for the simulated amorphous HPMCAS were 1.295, 1.287, and 1.276 g/cm(3) at 0.7, 5.7, and 13.2% w/w water, indicating swelling of the polymer with increasing water content. These densities compare favorably with the experimental density of 1.285 g/cm(3) for commercial HPMCAS-(AQOAT AS-MF) supporting the present HPMCAS models as a realistic representation of amorphous HPMCAS solids. Water molecules were observed to be mostly isolated from each other at a low water content (0.7% w/w), while clusters or strands of water were pervasive and broadly distributed in size at 13.2% w/w water. The average number of first-shell water molecules (n(w)) increased from 0.17 to 3.5, though the latter is still far below that (8.9) expected for the onset of a separate water phase. Increasing water content from 0.7 to 13.2% w/w was found to reduce the T(g) by ~81 K, similar to experimental observations. Plasticization with increasing water content resulted in increasing polymer mobility and water diffusivity. From 0.7 to 13.2% w/w water, the apparent water diffusivity increased from 1.1 × 10(-9) to 7.0 × 10(-8) cm(2)/s, though non-Einsteinian behavior persisted at all water contents explored. This and the water trajectories in the polymers suggest that water diffusion at 0.7% w/w water follows a "hopping" mechanism. At a higher water content (13.2% w/w) water diffusion follows dual diffusive processes: (1) fast water motions within water clusters; and (2) slower diffusion through the more rigid polymer matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp500135fDOI Listing

Publication Analysis

Top Keywords

water
24
132% w/w
20
w/w water
20
water content
20
amorphous hpmcas
12
increasing water
12
molecular dynamics
8
dynamics simulation
8
hpmcas polymer
8
molecular models
8

Similar Publications

Secondary metabolites are important bioactive compounds for diet and medicine. This study optimizes the extraction of hydroethanolic herbal extracts using an EDGE (Energized Dispersive Guided Extraction) system, evaluates their antioxidant capacity, and analyzes correlations among antioxidant activity, total phenolic content, and individual compounds. A Doehlert matrix design was used to optimize extraction, having temperature and time as independent variables, and total phenolic content (mg GAE/g) as the response, quantified via the Folin-Ciocalteu method.

View Article and Find Full Text PDF

A rapid and specific liquid chromatography-tandem mass spectrometry method with a wide linear range was developed and validated for the simultaneous quantification of Vitamin K1 (VK1) trans- and cis- isomers in human plasma. Bovine serum albumin solution (15%) served as a surrogate matrix for preparing the calibrators to establish the quantitative curves. After liquid-liquid extraction, VK1 trans- and cis- isomers in plasma samples were separated on a ChromCore C30 column (15 cm × 4.

View Article and Find Full Text PDF

Pathogenic characteristics of Causing Black Root Rot of Carrot.

Plant Dis

September 2025

Institute of Plant Protection, University of Belgrade-Faculty of Agriculture, Department of Phytopathology, Nemanjina 6, Belgrade , Serbia, 11080.

The pathogenic soilborne and postharvest fungus , as newly reported pathogen in Serbia, caused significant disease symptoms on carrot roots and seedlings in inoculation assays. In October 2023, machine-washed and cold-stored carrot roots showed symptoms of black rot of patches and abundant sporulation. The influence of the postharvest treatment of machine washing was confirmed by additional sampling at the production site.

View Article and Find Full Text PDF

Hardness of meat is one of the most important textural properties noted while eating. Bromelain, found in pineapples, is an enzyme that degrades collagen, a factor that affects meat hardness. The latter is generally evaluated based on shear strength and texture; however, such methods are destructive.

View Article and Find Full Text PDF

Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.

View Article and Find Full Text PDF