98%
921
2 minutes
20
Objective: To develop morphometric equations for prediction of body composition and create a body fat index (BFI) to estimate body fat percentage in overweight and obese dogs.
Design: Prospective evaluation study.
Animals: 83 overweight or obese dogs ≥ 1 year of age.
Procedures: Body condition score (BCS) was assessed on a 5-point scale, morphometric measurements were made, and visual and palpation-based assessments and dual-energy x-ray absorptiometry (DEXA) were performed. Equations for predicting lean body mass, fat mass, and body fat as a percentage of total body weight (ie, body fat percentage) on the basis of morphometric measurements were generated with best-fit statistical models. Visual and palpation-based descriptors were used to develop a BFI. Predicted values for body composition components were compared with DEXA-measured values.
Results: For the study population, the developed morphometric equations accounted for 98% of the variation in lean body mass and fat mass and 82% of the variation in body fat percentage. The proportion of dogs with predicted values within 10% of the DEXA values was 66 of 83 (80%) for lean body mass, 56 of 83 (68%) for fat mass, and 56 of 83 (67%) for body fat percentage. The BFI accurately predicted body fat percentage in 25 of 47 (53%) dogs, whereas the value predicted with BCS was accurate in 6 of 47 (13%) dogs.
Conclusions And Clinical Relevance: Morphometric measurements and the BFI appeared to be more accurate than the 5-point BCS method for estimation of body fat percentage in overweight and obese dogs. Further research is needed to assess the applicability of these findings to other populations of dogs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2460/javma.244.11.1279 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
Adrenal lipomas are benign tumors containing ectopic adipose tissue in the adrenal gland, an organ that normally lacks both adipocytes and their progenitors. The origin of this ectopic fat remains enigmatic, and the absence of a genetic animal model has hindered its investigation. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P], a key signaling lipid that regulates cellular growth and differentiation, is tightly regulated by the lipid phosphatases PTEN (phosphatase and tensin homolog) and SHIP2 (SH2-containing inositol phosphatase 2).
View Article and Find Full Text PDFAbdom Radiol (NY)
September 2025
Department of Gastroenterology department, Bishan Hospital of Chongqing Medical University, Chongqing, China.
Objective: This study aimed to create and validate a nomogram to predict early recurrence (ER) in Colorectal cancer (CRC) patients by combining CT-derived abdominal fat parameters with clinical and pathological characteristics.
Methods: We conducted a retrospective analysis of 206 CRC patients, dividing them into training (n = 146) and validation (n = 60) cohorts. We quantified abdominal fat parameters, including subcutaneous adipose tissue index (SATI) and visceral adipose tissue index (VATI), using semi-automatic software on CT images at the level of the third lumbar vertebra (L3).
Abdom Radiol (NY)
September 2025
Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
Objectives: The escalating global incidence of obesity, cardiometabolic disease and sarcopenia necessitates reliable body composition measurement tools. MRI-based assessment is the gold standard, with utility in both clinical and drug trial settings. This study aims to validate a new automated volumetric MRI method by comparing with manual ground truth, prior volumetric measurements, and against a new method for semi-automated single-slice area measurements.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Surgery, McMaster University, Hamilton, Ontario, Canada.
Severe burns are a major global health concern, and are associated with long-term physical and psychological impairments, multi-organ dysfunction, and substantial morbidity and mortality. While burn injuries in adults trigger systemic immuno-metabolic alterations-characterized by white adipose tissue browning, elevated resting energy expenditure, widespread catabolism, and inflammation-these adaptive responses are considerably impaired in older adults, with molecular mechanisms behind these differences remaining largely unclear. As a key regulator of systemic metabolism, investigating the pathological role of adipose tissue (AT) postburn may reveal novel targets that could potentially improve patient outcomes.
View Article and Find Full Text PDF