Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems.

Glob Chang Biol

Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via S. Alberto163, Ravenna, 48100, Italy; Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania, 7001, Australia.

Published: November 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Identifying the type and strength of interactions between local anthropogenic and other stressors can help to set achievable management targets for degraded marine ecosystems and support their resilience by identifying local actions. We undertook a meta-analysis, using data from 118 studies to test the hypothesis that ongoing global declines in the dominant habitat along temperate rocky coastlines, forests of canopy-forming algae and/or their replacement by mat-forming algae are driven by the nonadditive interactions between local anthropogenic stressors that can be addressed through management actions (fishing, heavy metal pollution, nutrient enrichment and high sediment loads) and other stressors (presence of competitors or grazers, removal of canopy algae, limiting or excessive light, low or high salinity, increasing temperature, high wave exposure and high UV or CO2 ), not as easily amenable to management actions. In general, the cumulative effects of local anthropogenic and other stressors had negative effects on the growth and survival of canopy-forming algae. Conversely, the growth or survival of mat-forming algae was either unaffected or significantly enhanced by the same pairs of stressors. Contrary to our predictions, the majority of interactions between stressors were additive. There were however synergistic interactions between nutrient enrichment and heavy metals, the presence of competitors, low light and increasing temperature, leading to amplified negative effects on canopy-forming algae. There were also synergistic interactions between nutrient enrichment and increasing CO2 and temperature leading to amplified positive effects on mat-forming algae. Our review of the current literature shows that management of nutrient levels, rather than fishing, heavy metal pollution or high sediment loads, would provide the greatest opportunity for preventing the shift from canopy to mat-forming algae, particularly in enclosed bays or estuaries because of the higher prevalence of synergistic interactions between nutrient enrichment with other local and global stressors, and as such it should be prioritized.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.12619DOI Listing

Publication Analysis

Top Keywords

mat-forming algae
20
nutrient enrichment
16
local anthropogenic
12
anthropogenic stressors
12
canopy-forming algae
12
synergistic interactions
12
interactions nutrient
12
algae
9
stressors
8
marine ecosystems
8

Similar Publications

Growth and anatoxin-a production of Microcoleus (Cyanobacteria) strains from streams in California, USA.

Harmful Algae

April 2025

Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA; Potomac Environmental Research and Education Center, Woodbridge, VA 22191, USA. Electronic address:

Benthic cyanobacterial proliferations are an emerging concern globally due to their potential for toxin production and subsequent negative environmental and health impacts. Microcoleus is a common mat-forming genus reported to produce potent neurotoxin, anatoxin-a, ingestion of which has been associated with animal mortalities. Six different unialgal monoclonal strains of Microcoleus were isolated from streams in California and grown in batch culture for 49 days.

View Article and Find Full Text PDF

Cultivation of algal biofilm and mat communities from the Garhwal Himalayas for possible use in diverse biotechnological applications.

Heliyon

June 2024

Laboratory of Algal Biotechnology, Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University, Srinagar, Garhwal, 246 174, India.

The current study aimed to screen biofilm-/mat-forming and fast-growing algal communities from the Garhwal Himalayas, India. A total of 15 biofilm/mat-forming algal samples were collected, 8 biofilms out of these could be cultured and analyzed for their growth and development with time. Light microscopy was used to identify different types of cyanobacteria and algae present in the different collected biofilms/mats.

View Article and Find Full Text PDF

Recovery of algal turfs following removal.

Mar Environ Res

November 2023

UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, 6009, Western Australia, Australia; Institute of Marine Research, Nye Flødevigveien 20, 4817, His, Norway.

As a consequence of the increasing human footprint on the environment, marine ecosystems are rapidly transforming into new configurations dominated by early-successional and weedy life forms. Algal turfs, in particular, are emerging as a common and widespread configuration of shallow temperate and tropical reefs, and are predicted to transform reef dynamics and ecosystem services. Restoration is an increasingly used approach to mitigate these transformations, with turf removal being proposed as a tool to shift back the competitive balance and facilitate the recovery of initial species, such as forest-forming seaweeds.

View Article and Find Full Text PDF

Many coastal ecosystems, such as coral reefs and seagrass meadows, currently experience overgrowth by fleshy algae due to the interplay of local and global stressors. This is usually accompanied by strong decreases in habitat complexity and biodiversity. Recently, persistent, mat-forming fleshy red algae, previously described for the Black Sea and several Atlantic locations, have also been observed in the Mediterranean.

View Article and Find Full Text PDF

Nuisance algal infestations are increasing globally in distribution and frequency. Copper-based algaecides are routinely applied to control these infestations, though there is an ever-present concern of risks to non-target species. This research evaluated risks associated with a commonly applied chelated copper algaecide (Captain® XTR; SePRO Corporation) to a sentinel non-target species (Daphnia magna) and further assessed alteration of the exposure and toxicity when a nuisance mat-forming cyanobacterium, Lyngbya wollei, was present in exposures.

View Article and Find Full Text PDF