Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanoparticles hold great promise in cell biology and medicine due to the inherent physico-chemical properties when these materials are synthesized on the nanoscale. Moreover, their small size, and the ability to functionalize the outer nanoparticle surface makes them an ideal vector suited to traverse a number of physical barriers in the human body. While nanoparticles hold great promise for applications in cell biology and medicine, their downfall is the toxicity that accompanies exposure to biological systems. This chapter focuses on exposure via the oral route since nanomaterials are being engineered to act as carriers for drugs, contrast agents for specialized imaging techniques, as well as ingested pigments approved by regulatory agencies for human food products. After these nanomaterials are ingested they have the potential to interact with a number of biologically significant tissues, one of which is the epithelium of the small intestine. Within the small intestine exists enterocytes whose principal function is nutrient absorption. The absorptive process is aided by microvilli that act to increase the surface area of the epithelium. Dense arrays of microvilli, referred to as the brush border, have recently been shown to undergo disruption as a consequence of exposure to nanomaterials. This chapter aims to set the stage for detailed mechanistic studies at the cell biology level concerning this newly emerging nanotoxicity research paradigm, as the underlying structural characterization responsible for the existence of microvilli have been elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-94-017-8739-0_4DOI Listing

Publication Analysis

Top Keywords

cell biology
12
brush border
8
nanoparticles hold
8
hold great
8
great promise
8
biology medicine
8
small intestine
8
engineered nanoparticles
4
nanoparticles induced
4
induced brush
4

Similar Publications

This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.

View Article and Find Full Text PDF

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

Anti-inflammatory and immunomodulatory effect of purslane and turmeric in rheumatoid arthritis rat models.

Cell Mol Biol (Noisy-le-grand)

September 2025

Department of Chemistry, Faculty of Science and Health, Koya University, Koya, KOY45, Kurdistan Region, Iraq.

Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by joint inflammation. Given the side effects of conventional treatments, this study focuses on the anti-inflammatory effects of purslane (Portulaca oleracea) and turmeric (Curcuma longa). The research is driven by the growing demand for plant based-treatment for safer therapeutic options for RA management.

View Article and Find Full Text PDF

Expression analysis of C-FOS and XRCC3 Thr241Met polymorphism in gastric cancer.

Cell Mol Biol (Noisy-le-grand)

September 2025

Department of Biology, College of Education for Pure Sciences, University of Kerbala, Kerbala, Iraq.

Gastric cancer is one of the causes of deaths related to cancer across the globe and both genetic and environmental factors are the most prominent. Causes of its pathogenesis. This paper researches the expression of the C-FOS gene.

View Article and Find Full Text PDF

Follicular unit extraction (FUE) has become a leading technique in hair transplantation, yet optimal management of the donor area remains a clinical challenge. This systematic review analyzes intraoperative and postoperative interventions applied to the donor area in FUE hair transplantation, with a focus on both clinical outcomes and the cellular and molecular mechanisms involved in tissue repair, inflammatory response, and regenerative processes. A comprehensive literature search was conducted in PubMed and EMBASE (January 2000-June 2025), identifying clinical studies that evaluated donor area treatments and reported outcomes related to healing, inflammation, infection, and patient satisfaction.

View Article and Find Full Text PDF