Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The use of cardiopulmonary bypass (CPB) is suggested to induce oxidative stress, reflected by an imbalance between prooxidant and antioxidant substances. The majority of studies published have either focused on only one aspect (prooxidant or antioxidant side) or covered only a short observation period. Therefore, the aim of this study was to investigate the long-term effects of CPB on the balance of prooxidative markers and antioxidant substances in one single group of patients, being able to estimate the degree of oxidative stress.

Methods: Blood samples were taken from 29 patients undergoing cardiovascular surgery beginning the day before surgery through postoperative day 6 (discharge). Plasma concentrations of vitamins C (total ascorbic acid) and E and malondialdehyde were measured by high-performance liquid chromatography. Plasma levels of ascorbyl free radical were determined using electron paramagnetic resonance spectroscopy.

Results: The study showed a significant decrease in vitamin C plasma levels during CPB without any recovery of vitamin C up to the time of discharge. Furthermore, CPB induced a significant increase in malondialdehyde plasma concentrations immediately after unclamping, accompanied by a significant increase in the ascorbyl free radical to total ascorbic acid ratio. The latter stayed elevated until the end of observation.

Conclusions: Our findings indicate that the oxidative stress event after CPB can be divided into two phases: Immediately after reperfusion, a massive oxidative stress occurs, reflected by the increase in malondialdehyde. During convalescence, there must be an ongoing situation of oxidative stress, especially in the water-soluble compartment, leading to the consumption of vitamin C. Because the main antioxidant substance, vitamin C, did not increase again over the entire observation period, supplementation should be given consideration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nut.2013.10.026DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
plasma levels
12
decrease vitamin
8
vitamin plasma
8
prooxidant antioxidant
8
antioxidant substances
8
observation period
8
plasma concentrations
8
total ascorbic
8
ascorbic acid
8

Similar Publications

Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.

Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.

View Article and Find Full Text PDF

Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis. The relationship between SIC and protein acetylation, particularly the balance between acetylation and deacetylation in cardiomyocyte subcellular structures, as well as how nuclear-mitochondrial coordination maintains standard antioxidant stress capacity, remains unclear. This study focused on exploring the nuclear-mitochondrial regulatory mechanisms formed by the interplay of Sirtuin 3 (SIRT3) and Forkhead box O3a (FOXO3a).

View Article and Find Full Text PDF

Traumatic brain injuries (TBIs) are a risk factor for Alzheimer's disease (AD), and share several important pathological features including the development of neurofibrillary tangles (NFT) of tau protein. While this association is well established, the underlying pathogenesis is poorly defined and current treatment options remain limited, necessitating novel methods and approaches. In response we developed "TBI-on-a-chip", an trauma model utilizing murine cortical networks on microelectrode arrays (MEAs), capable of reproducing clinically relevant impact injuries while providing simultaneous morphological and electrophysiological readout.

View Article and Find Full Text PDF

Type-I Supramolecular Photosensitizer Enables GSH Depletion by Hydrogen Atom Transfer.

J Am Chem Soc

September 2025

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

Photodynamic therapy (PDT) induces oxidative stress that triggers a compensatory upregulation of intracellular glutathione (GSH), thereby diminishing PDT efficacy. The simultaneous generation of reactive oxygen species and depletion of GSH holds promise for amplifying oxidative damage and enhancing therapeutic outcomes yet remains a challenge. In this work, we present a Type-I supramolecular photosensitizer designed to deplete GSH through a hydrogen atom transfer mechanism while concurrently generating superoxide radicals.

View Article and Find Full Text PDF

Mitochondrial ClpX Inhibition Induces Ferroptosis and Blocks Pancreatic Cancer Cell Proliferation.

Chembiochem

September 2025

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.

The ATPase caseinolytic protease X (ClpX), forming the ClpXP complex with caseinolytic protease P (ClpP), is essential for mitochondrial protein homeostasis. While ClpP targeting is a recognized anticancer strategy, the role of ClpX in cancer remains underexplored. In pancreatic ductal adenocarcinoma (PDAC), elevated CLPX expression correlates with poor prognosis, suggesting its oncogenic function.

View Article and Find Full Text PDF