98%
921
2 minutes
20
The proinflammatory cytokine Tumour Necrosis Factor (TNF)-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1) and β2-adrenoreceptors (β2-ARs). TNF-α activated the canonical Nuclear Factor-κB (NF-κB) pathway and Mitogen-Activated Protein Kinases (MAPKs), culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6) and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB), CREB-binding protein (CBP) and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946252 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090649 | PLOS |
J Biomech
September 2025
Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland. Electronic address:
Alterations in skeletal muscle morphology and composition are critical factors in cerebral palsy (CP), including changes in passive stiffness and in belly and fascicle lengths. In this study, we quantified the relative contributions of muscle and tendon to passive stiffness across the ankle range of motion in individuals with CP and typically developing (TD) peers. We also investigated morphological factors underlying increased muscle stiffness.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2025
University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada.
Post-Intensive Care Syndrome (PICS) is a serious condition involving physical weakness, depression, and cognitive impairment that develop during or after an intensive care unit (ICU) stay, often resulting in long-term declines in quality of life. Patients with acute respiratory distress syndrome (ARDS) and severe COVID-19 are at particularly high risk, yet the molecular mechanisms underlying PICS remain poorly understood. Here, we identify impaired Apelin-APJ signaling as a potential contributor to PICS pathogenesis via disruption of inter-organ homeostasis.
View Article and Find Full Text PDFMed Sci Sports Exerc
September 2025
Department of Engineering Mechanics, Tsinghua University, Beijing, CHINA.
Purpose: Develop a musculoskeletal-environment interaction model to reconstruct the dynamic-interaction process in skiing.
Methods: This study established a skier-ski-snow interaction (SSSI) model that integrated a 3D full-body musculoskeletal model, a flexible ski model, a ski boot model, a ski-snow contact model, and an air resistance model. An experimental method was developed to collect kinematic and kinetic data using IMUs, GPS, and plantar pressure measurement insoles, which were cost-effective and capable of capturing motion in large-scale field conditions.
PLoS One
September 2025
Sports and Exercise Medicine, Queen Mary University London, London, United Kingdom.
Background: Single-leg stance requires pelvic stability, largely supported by the hip abductors. Differences in hip abductor activation between sexes and individuals with or without musculoskeletal conditions may relate to abductor weakness. However, the relationship between hip abduction strength and muscle activation during stance, and whether this is moderated by sex, remains unclear.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2025
Humboldt-University zu Berlin, Berlin, Germany.
Skeletal muscle atrophy and weakness are major contributors to morbidity, prolonged recovery, and long-term disability across a wide range of diseases. Atrophy is caused by breakdown of sarcomeric proteins resulting in loss of muscle mass and strength. Molecular mechanism underlying the onset of muscle atrophy and its progression have been analysed in patients, mice, and cell culture but the complementarity of these model systems remains to be explored.
View Article and Find Full Text PDF