98%
921
2 minutes
20
Photosystem II (PSII) proteins from spinach leaves were immobilized onto quartz substrates according to the Layer-by-Layer (LbL) procedure, alternating protein to polyethylenimine (PEI) layers by exploiting electrostatic interactions. The effects of several factors, such as storage conditions, ageing of the PSII-modified substrates, as well as PSII concentration in buffer, on the quality of the prepared multilayers, were investigated by UV-vis Absorption Spectroscopy and Atomic Force Microscopy (AFM). A number of 13 layers was found to be optimal to guarantee intense PSII optical signals with homogeneous morphological distributions of proteins. The multilayers resulted stable if stored in contact with air at 4 °C, as observed by UV-vis Absorption spectra recorded after 48 h. The best results in terms of AFM images and electron transfer efficiency (measured by Hill Reaction assays) were gained by using 5.6 × 10(-7) M chlorophyll concentration, obtaining multilayers with the most ordered protein distributions and the highest electron transfer efficiency, i.e. 85% of an iso-absorbing PSII suspension. The results highlight the possibility to successfully immobilize PSII proteins, without considerable loss of bioactivity, thanks to the mild nature of the electrostatic LbL technique, opening up possibilities of applications in the bioelectrochemical energy conversion and biosensoristic fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10863-014-9544-1 | DOI Listing |
Langmuir
September 2025
Federal University of São Paulo, Laboratory of Hybrid Materials, Diadema, São Paulo 09913-030, Brazil.
This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Cellulose nanocrystals (CNCs) have garnered attention for their renewable and reactive nature, yet CNC allomorph II (CNC-II) remains underexplored compared to the extensively studied CNC-I. This study bridges this gap by introducing a two-step carboxylamine condensation strategy to conjugate poly(ethylene glycol) (PEG) onto CNC-II via ethylenediamine, leveraging the high topochemical reactivity of CNC-II. Utilizing bicarboxylate-capped PEG as a probe, quartz crystal microbalance with energy dissipation (QCM-D) assays revealed a significant reactivity increase of 16.
View Article and Find Full Text PDFSmall
August 2025
Physics Department, Lancaster University, Lancaster, LA1 4YB, UK.
Despite the significant potential of molecular-scale devices for miniaturized electronics and energy conversion applications, conventional self-assembled monolayers (SAMs) exhibit limitations in simultaneously optimizing electrical conductivity and thermopower due to constrained electronic pathway modulation. This study demonstrates a molecular engineering strategy employing a discretely arranged conjugated molecular backbone to construct ordered cage-like supramolecular cavities, enabling controlled intercalation of fullerene within bipyridine-based SAMs grown on graphene-substrates. Quartz crystal microbalance and atomic force microscopy measurements confirmed the structural integrity of the fullerene-trapped SAMs.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2025
Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
We present a dual biosensing strategy integrating Quartz Crystal Microbalance (QCM) and Surface-Enhanced Raman Spectroscopy (SERS) for the quantitative and molecular-specific detection of FKBP12. Silver nanodendritic arrays were electrodeposited onto QCM sensors, optimized for SERS enhancement using Rhodamine 6G, and functionalized with a custom-designed receptor to selectively capture FKBP12. QCM measurements revealed a two-step Langmuir adsorption behavior, enabling sensitive mass quantification with a low limit of detection.
View Article and Find Full Text PDFJ Environ Manage
August 2025
Research Center Landscape Development and Mining Landscapes, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany.
Iron (Fe) hydroxide sludge is a by-product of open-pit lignite mining that accumulates in large quantities during acid mine drainage (AMD) treatment, where Fe is precipitated to mitigate its environmental impact on aquatic ecosystems. Large quantities accrue, and the majority of Fe sludge is currently landfilled, although it may hold potential for beneficial reuse, for example, as a soil amendment. Hence, this study investigated the potential of Fe sludge to improve the water-holding capacity of sandy soils.
View Article and Find Full Text PDF