98%
921
2 minutes
20
Iron (Fe) hydroxide sludge is a by-product of open-pit lignite mining that accumulates in large quantities during acid mine drainage (AMD) treatment, where Fe is precipitated to mitigate its environmental impact on aquatic ecosystems. Large quantities accrue, and the majority of Fe sludge is currently landfilled, although it may hold potential for beneficial reuse, for example, as a soil amendment. Hence, this study investigated the potential of Fe sludge to improve the water-holding capacity of sandy soils. A pure quartz sand and three sandy soil substrates were mixed with three different amounts of Fe oxide sludge (15, 30, and 60 t ha) in pelletized and powdered form. Plant-available water-holding capacity (AWHC) was measured for all treatments, and results were compared to controls without Fe oxide sludge addition. The quartz sand's AWHC increased at all application rates of Fe sludge. In natural sandy soil substrates, Fe sludge increased AWHC at the highest application rate only in the soil material with an initial AWHC of <10 vol%. The application of powdered Fe sludge was found to be more effective than pelletized sludge. We conclude that Fe oxide sludge applied as powder has the potential to enhance the AWHC of soils with an initial AWHC <10 vol%, thus improving the quality of sandy substrates in post-mining areas. Yet, application of Fe sludge to improve soil physical properties should always consider their simultaneous impact on soil chemical properties, such as pH buffering, carbon accumulation, and effects on potentially harmful trace elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2025.126870 | DOI Listing |
Sci Total Environ
September 2025
School of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China.
Biochar has emerged as a promising soil amendment for improving soil quality and mitigating environmental impacts, such as nutrient leaching. This study evaluated the impacts of ball-milled bamboo nano-biochar on water infiltration dynamics, retention capacity, and nitrogen‑phosphorus leaching in sandy loam soil using controlled column experiments and leaching experiments with five application doses alongside bulk biochar and untreated controls. Experimental results demonstrated that nano-biochar application significantly enhanced soil water retention capacity compared to the raw soil.
View Article and Find Full Text PDFSci Total Environ
September 2025
University Hohenheim, Department of Process Analytics and Cereal Science, Stuttgart, 70599, Germany.
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants with increasing prevalence in agricultural soils, primarily introduced through biosolid application, wastewater irrigation, and atmospheric deposition. This review provides a meta-analysis of terminologies across 145 peer-reviewed studies, identifying inconsistency in the classification of PFAS subgroups-such as "long-chain vs. short-chain," "precursors," and "emerging PFAS"-which hinders regulatory harmonization and model calibration.
View Article and Find Full Text PDFBMC Plant Biol
September 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
Background: Because of their ecological, aesthetic, and beneficial characteristics, native desert plants are highly significant. They can also be utilized in landscape architecture, particularly in environments with harsh conditions. The present study aims to evaluate the potential utilization of the wild desert plants Pancratium maritimum L.
View Article and Find Full Text PDFACS Omega
September 2025
College of Science & College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
Pesticides are of great significance in ensuring food yield. However, the extensive use of pesticides has led to severe environmental pollution and significant economic losses. Chitosan-based pesticide delivery systems potentially present a favorable approach to enhance pesticide using efficiency.
View Article and Find Full Text PDFMicrobiol Res
August 2025
Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China; The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
Black morel (Morchella sextelata) is widely regarded as a post-fire mushroom because of its prolific fruiting in post-fire forest soils enriched with charcoal. Intriguingly, artificial cultivation of M. sextelata often incorporates biochar as a soil amendment to enhance yield, although the underlying physicochemical and ecological mechanisms remain unclear.
View Article and Find Full Text PDF