Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present an iterative design method for the coupling and the mode conversion of arbitrary modes to focused surface plasmons using a large array of aperiodically randomly located slits in a thin metal film. As the distance between the slits is small and the number of slits is large, significant mutual coupling occurs between the slits which makes an accurate computation of the field scattered by the slits difficult. We use an accurate modal source radiator model to efficiently compute the fields in a significantly shorter time compared with three-dimensional (3D) full-field rigorous simulations, so that iterative optimization is efficiently achieved. Since our model accounts for mutual coupling between the slits, the scattering by the slits of both the source wave and the focused surface plasmon can be incorporated in the optimization scheme. We apply this method to the design of various types of couplers for arbitrary fiber modes and a mode demultiplexer that focuses three orthogonal fiber modes to three different foci. Finally, we validate our design results using fully vectorial 3D finite-difference time-domain (FDTD) simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.000646DOI Listing

Publication Analysis

Top Keywords

mode conversion
8
focused surface
8
mutual coupling
8
fiber modes
8
slits
7
design
4
design large
4
large scale
4
scale plasmonic
4
plasmonic nanoslit
4

Similar Publications

Bioconversion of CO to methane energy by Methanococcus maripaludis in newly-designed bioreactor system: Kinetic characteristics, parameter optimization and grid-quality production.

Bioresour Technol

September 2025

State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technol

Carbon dioxide enhanced oil recovery (CO-EOR) is widely used for carbon capture, utilization, and storage in Chinese oilfields, but part of injected CO returns with produced oil, reducing carbon-reduction efficiency. Bioconverting this CO to methane energy by methanogens benefits the technology, yet on-site high-efficiency conversion meeting natural-gas grid standards remains challenging. This study used a newly-designed triple-tank bioreactor to investigate CO-to-methane conversion and methanogenic kinetics of Methanococcus maripaludis.

View Article and Find Full Text PDF

Salmonella typhimurium (S. typhimurium) A dual-mode colorimetric/photothermal immunochromatographic strip (ICS) employing hollow polydopamine nanoparticles (h-PDA) is reported for the ultrasensitive detection of Salmonella typhimurium (S. typhimurium).

View Article and Find Full Text PDF

Practical photonic bandgap structures for high frequency axion haloscopes.

Rev Sci Instrum

September 2025

Department of Nuclear Engineering, University of California, Berkeley, Berkeley, California 94720, USA.

Current and future searches for dark matter axions, based on their resonant conversion to photons in a magnetic field, span many orders of magnitude. A major impediment to designing resonators at the high end of this range, 5 GHz and above, is the proliferation of TE modes, which overwhelm and hybridize with the TM010 mode to which the axion couples, making the search impossible. We demonstrate that a photonic bandgap structure can be designed that completely suppresses the TE spectrum, even reducing the number of lattice periods to two or one and violating perfect lattice symmetry.

View Article and Find Full Text PDF

Reassignment of the vibronic structure in the absorption spectrum of carbon cluster anion C6- exhibiting fast radiative cooling.

J Chem Phys

September 2025

Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan.

Linear carbon cluster anions, such as C6-, have been considered to be promising candidate interstellar molecules. Recent experiments have demonstrated that in a collision-free vacuum environment, C6- exhibits fast radiative cooling from its highly vibrationally excited states through inverse internal conversion (IIC). Since IIC is driven by vibronic coupling, the understanding of vibronic structures of C6- is of theoretical significance.

View Article and Find Full Text PDF

Introduction: The procedural complexity and time-consuming of conventional pesticide residue detection methods in traditional Chinese medicines (TCMs) significantly impeded their application in modern systems. To address this, this study presented an innovative dual-mode sensor driven by Cu/Cu redox-cycling, which achieved efficient signal transduction from enzyme inhibition to optical response for rapid acetylcholinesterase (AChE) activity and organophosphorus pesticide (OP) residue detection.

Methods: The AB-Cu NPs sensor, a dynamic redox-responsive system, was constructed via coordination-driven assembly of Azo-Bodipy 685 (AB 685) and Cu.

View Article and Find Full Text PDF