98%
921
2 minutes
20
To understand the nucleation of carbon atoms to form carbon clusters on transition metal substrates during chemical vapor deposition (CVD) synthesis, the structure, energetics, and mobility of carbon intermediates up to 6 atoms on the Ni(111) surface were investigated using Density Functional Theory (DFT). Carbon clusters were found to be more thermodynamically stable than adsorbed atomic carbon, with linear carbon structures being more stable than branched and ring structures. Carbon chains were also found to have higher mobility than branched configurations. The interaction energy between carbon clusters and the Ni surface shows that branched carbon clusters have stronger interaction with the Ni substrate when compared with the carbon chains, supporting that carbon chains generally have higher mobility than branched clusters. The transition states and energy barriers for the formation of different carbon clusters were also studied. The results show that the formation of the branched configurations is kinetically favored as it presents lower energy barriers than those obtained for carbon chains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp54376e | DOI Listing |
J Chem Phys
September 2025
Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan.
Linear carbon cluster anions, such as C6-, have been considered to be promising candidate interstellar molecules. Recent experiments have demonstrated that in a collision-free vacuum environment, C6- exhibits fast radiative cooling from its highly vibrationally excited states through inverse internal conversion (IIC). Since IIC is driven by vibronic coupling, the understanding of vibronic structures of C6- is of theoretical significance.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Reference Center for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina.
Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.
View Article and Find Full Text PDFProtein Pept Lett
September 2025
Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand.
Background: Bacillus thuringiensis Cry toxins are well known for their insecticidal properties, primarily through the formation of ion-leakage pores via α4-α5 hairpins. His178 in helix 4 of the Cry4Aa mosquito-active toxin has been suggested to play a crucial role in its biotoxicity.
Objective: This study aimed to investigate the functional importance of Cry4Aa-His178 through experimental and computational analyses.
Environ Pollut
September 2025
Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geog
Tire microplastics (TMPs) represent a major contributor to microplastic pollution, posing threats to aquatic ecosystems. As carbon-rich substrates, TMPs influence microbial colonization and ecological functions. This study investigates the impacts of pristine (P-TMPs) and scrap (S-TMPs) TMPs from the same brand on microbial communities within the tire-plastisphere.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
College of Life Sciences, China Jiliang University, Hangzhou, 310018, China. Electronic address:
Glucose sensors are critical analytical devices designed for precise and continuous monitoring of glucose concentrations, playing a pivotal role in healthcare, particularly in diabetes management. Here, we synthesis glucose oxidase (GOx)/Se hydrogel to detect the glucose, thereby generating measurable electrical signals. Further, the transfection of electronic signals rely on the poly(dopamine) (PDA) grid in hydrogel.
View Article and Find Full Text PDF