98%
921
2 minutes
20
Objective: The aim of this study was to investigate the compromised developmental trajectory of the functional connectivity among resting-state-related functional networks (RSFNs) in medication-naïve children with attention-deficit/hyperactivity disorder (ADHD).
Subjects And Methods: Using both independent component analysis and dual regression, subject-specific time courses of 12 RSFNs were extracted from both 20 medication-naïve children with ADHD, and 20 age and gender-matched control children showing typical development (TDC). Both partial correlation coefficients among the 12 RSFNs and a resting-state resource allocation index (rsRAI) of the salience network (SN) were entered into multiple linear regression analysis to investigate the compromised, age-related change in medication-naïve ADHD children. Finally, correlation analyses were performed between the compromised RSFN connections showing significant group-by-age interaction and rsRAI of SN or clinical variables.
Results: Medication-naïve ADHD subjects failed to show age-related increment of functional connectivity in both rsRAI of SN and two RSFN connections, SN-Sensory/motor and posterior default mode/precuneus network (pDMN/prec)--anterior DMN. Lower SN-Sensory/motor connectivity was related with higher scores on the ADHD Rating Scale, and with poor scores on the continuous performance test. The pDMN/prec-aDMN connectivity was positively related with rsRAI of SN.
Conclusions: Our results suggest that medication-naïve ADHD subjects may have delayed maturation of the two functional connections, SN-Sensory/Motor and aDMN-pDMN/prec. Interventions that enhance the functional connectivity of these two connections may merit attention as potential therapeutic or preventive options in both ADHD and TDC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873390 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083516 | PLOS |
Adv Physiol Educ
September 2025
Swansea University Medical School, Swansea University, Swansea, UK.
The chick embryo ventricular cardiomyocyte model provides students easy access to experiments involving fundamental features of cardiac cell physiology and pharmacology. Using standard physiology teaching laboratories and basic cell culture equipment, spontaneously beating colonies of electrically-connected cardiomyocytes can be obtained by the students themselves. Students learn, aseptic techniques and cell culture alongside experiments illustrating, at the simplest level of experimentation, how beating rate can be altered physiologically or pharmacologically.
View Article and Find Full Text PDFCurr Biol
July 2025
Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden. Electronic address:
The claustrum (CLA) is a thin and elongated brain structure that is located between the insula and lateral striatum and is implicated in a wide range of behaviors. It is characterized by its extensive synaptic connectivity with multiple cortical regions. While CLA projection neurons are glutamatergic, several studies have shown an inhibitory impact of CLA on its cortical targets, suggesting the involvement of inhibitory cortical interneurons.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Institut de recherches cliniques de Montréal (IRCM); Programmes de biologie moléculaire, Université de Montréal; Département de Médecine, Université de Montréal;
Embryonic tissue growth and patterning are largely controlled by signals exchanged locally between cell populations within the tissues themselves. Cytonemes are a type of signaling filopodia first identified in Drosophila that connect and mediate exchange between signal-producing and signal-receiving cells. In the developing Drosophila wing imaginal disc, cytonemes are involved in signal exchange between distinct populations of cells within the disc proper (DP) epithelium, which will form the adult wing, as well as between DP cells and cells in adjacent disc-associated tissues.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2025
This article proposes a novel model-based planning framework for freeway ramp metering (RM), denoted as Koopman-driven linearized model-based offline planning (KLMOP). This framework integrates the model predictive control (MPC) and offline reinforcement learning (RL) under assumptions of a linear Markov decision process (MDP) with the Koopman operator. KLMOP introduces a fully linearized control framework by learning and modeling the dynamics, reward function, and value function in a latent space through a Koopman-based latent dynamical model (KLDM) and a pessimistic value iteration (PEVI) algorithm.
View Article and Find Full Text PDFPsychol Rev
September 2025
Neural Computation Group, Max-Planck Institute for Human Cognitive and Brain Sciences.
It has been suggested that episodic memory relies on the well-studied machinery of spatial memory. This influential notion faces hurdles that become evident with dynamically changing spatial scenes and an immobile agent. Here I propose a model of episodic memory that can accommodate such episodes via temporal indexing.
View Article and Find Full Text PDF