98%
921
2 minutes
20
The goal of this study was to investigate the response of activation of Rhizobium tibeticum with mixture of hesperetin and apigenin to improve growth, nodulation, and nitrogen fixation of fenugreek grown under cobalt (Co) stress. The current study showed that high concentrations of Co-induced noxious effects on rhizobial growth, nod gene expression, nodulation, phenylalanine ammonia-lyase (PAL) and glutamine synthetase (GS) activities, total flavonoid content, and nitrogen fixation. Addition of a mixture of hesperetin and apigenin to growth medium supplemented with different concentrations of Co significantly increased bacterial growth. PAL activity of roots grown hydroponically at 100 mg kg(-1) Co and inoculated with induced R. tibeticum was significantly increased compared with plants receiving uninduced R. tibeticum. Total flavonoid content of root exudates of plants inoculated with activated R. tibeticum was significantly increased compared with inoculated plants with unactivated R. tibeticum or uninoculated plants at variant Co dosages. Application of 50 mg kg(-1) Co significantly increased nodulation, GS, nitrogenase activity, and biomass of plants inoculated with either or uninduced R. tibeticum. The total number and fresh mass of nodules, nitrogenase activity, and biomass of plants inoculated with induced cells grown in soil treated with 100 and 200 mg kg(-1) Co were significantly increased compared with plants inoculated with uninduced cells. Induced R. tibeticum with flavonoids significantly alleviates the adverse effect of Co on nod gene expression and therefore enhances nitrogen fixation. Induction of R. tibeticum with compatible flavonoids could be of practical importance in augmenting growth and nitrogen fixation of fenugreek grown in a Co-contaminated agroecosystem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00244-013-9980-7 | DOI Listing |
Annu Rev Microbiol
September 2025
4Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France.
Cyanobacteria played a pivotal role in shaping Earth's early history and today are key players in many ecosystems. As versatile and ubiquitous phototrophs, they are used as models for oxygenic photosynthesis, nitrogen fixation, circadian rhythms, symbiosis, and adaptations to harsh environments. Cyanobacterial genomes and metagenomes exhibit high levels of genomic diversity partly driven by gene flow within and across species.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2025
Department of Systems Biology, Harvard Medical School, Boston, USA.
The nitrogen-fixing, chemolithoautotrophic genus is found across numerous diverse environments worldwide and is an important member of many ecosystems. These species serve as model systems for their metabolic properties and have industrial applications in bioremediation and sustainable protein, food and fertilizer production. Despite their abundance and utility, the majority of strains are without a genome sequence, and only eight validly published species are known to date.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, Vienna, 1090, Austria.
Density functional theory (DFT) is the standard approach for modeling MIL-101(Fe) and related Fe-based metal-organic frameworks, typically assuming a ferromagnetic high-spin configuration. However, this widely adopted approach overlooks a key electronic feature: Spin frustration in the triangular -O) nodes. Using flip-spin, broken-symmetry DFT, we identify the true ground state as an antiferromagnetic state that standard DFT fails to capture.
View Article and Find Full Text PDFEnviron Res
September 2025
National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China. Electronic address: cmm114@mail
Black soldier fly (BSF) organic fertilizer is known to enhance soil fertility and promote plant growth. However, its effects on soil carbon (C) and nitrogen (N) cycling remains unclear. In this study, we established a BSF chicken manure bioconversion system to produce BSF organic fertilizer and investigate its impacts on soil C and N cycling, as well as microbial ecological networks through metagenomic analysis.
View Article and Find Full Text PDFCurr Biol
September 2025
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia.
A new study shows that sucrose allocation within soybean roots by the sucrose transporter GmSWEET3c promotes rhizobial infection, nodulation, and symbiotic nitrogen fixation.
View Article and Find Full Text PDF