Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The application of RNA interference (RNAi) has great therapeutic potential for degenerative diseases of cartilaginous tissues by means of fine tuning the phenotype of cells used for regeneration. However, possible non-specific effects of transfection per se might be relevant for future clinical application. In the current study, we selected two synthetic transfection reagents, a cationic lipid-based commercial reagent Lipofectamine RNAiMAX and polyethylenimine (PEI), and two naturally-derived transfection reagents, namely the polysaccharides chitosan (98% deacetylation) and hyaluronic acid (20% amidation), for siRNA delivery into primary mesenchymal cells including nucleus pulposus cells, articular chondrocytes and mesenchymal stem cells (MSCs). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an endogenous model gene to evaluate the extent of silencing by 20 nM or 200 nM siRNA at day 3 and day 6 post-transfection. In addition to silencing efficiency, non-specific effects such as cytotoxicity, change in DNA content and differentiation potential of cells were evaluated. Among the four transfection reagents, the commercial liposome-based agent was the most efficient reagent for siRNA delivery at 20 nM siRNA, followed by chitosan. Transfection using cationic liposomes, chitosan and PEI showed some decrease in viability and DNA content to varying degrees that was dependent on the siRNA dose and cell type evaluated, but independent of GAPDH knockdown. Some effects on DNA content were not accompanied by concomitant changes in viability. However, changes in expression of marker genes for cell cycle inhibition or progression, such as p21 and PCNA, could not explain the changes in DNA content. Interestingly, aspecific upregulation of GAPDH activity was found, which was limited to cartilaginous cells. In conclusion, non-specific effects should not be overlooked in the application of RNAi for mesenchymal cell transfection and may need to be overcome for its effective therapeutic application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2013.12.006DOI Listing

Publication Analysis

Top Keywords

dna content
16
non-specific effects
12
transfection reagents
12
cell type
8
cell cycle
8
primary mesenchymal
8
mesenchymal cells
8
sirna delivery
8
transfection
7
cells
7

Similar Publications

Genomic resequencing unravels species differentiation and polyploid origins in the aquatic plant genus Trapa.

Plant J

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.

Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.

View Article and Find Full Text PDF

Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.

View Article and Find Full Text PDF

sp. nov., a novel halotolerant, flexirubin-type pigment-producing bacterium of the family .

Int J Syst Evol Microbiol

September 2025

Second Institute of Oceanography, Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou 310018, PR China.

A Gram-staining-negative, non-motile, aerobic, rod-shaped bacterium, designated 14752, was isolated from a saline lake in Xinjiang Uygur Autonomous Region, China. The strain was subjected to a taxonomic study using a polyphasic approach. Strain 14752 was able to grow at 4-40 ℃ (optimum 28 ℃), pH 6.

View Article and Find Full Text PDF

Escherichia coli strain O55 contains two cryptic plasmids that depend on each other to replicate.

Arch Microbiol

September 2025

División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Zip Code 36050, Guanajuato, Mexico.

Plasmids are fundamental to molecular biology and biotechnology, playing a crucial role in bacterial evolution. Some plasmids are linked to complex cellular dynamics, including pathogenicity islands, antibiotic resistance, and gene mobilization. This study reports the isolation and sequencing of two cryptic plasmids with different electrophoretic mobilities from the Escherichia coli clinical isolate O55.

View Article and Find Full Text PDF

Niabella insulamsoli sp. nov., Isolated From Soil and Showing Potential Cosmetic Functions with Flexirubin Extract.

Curr Microbiol

September 2025

Microbiology Laboratory, Department of Life Science, Kyonggi University, Suwon, Gyeonggi-Do, Republic of Korea.

A yellow-pigmented, non-motile, rod-shaped, and Gram-stain-negative bacterium was isolated from the soil of Yeongheung Island, Korea. The novel isolate, strain N803, was strictly aerobic, grew optimally at 30-35 °C, at pH 6.5, and in the presence of 0-2% NaCl.

View Article and Find Full Text PDF