98%
921
2 minutes
20
Insulin resistance is a complex altered metabolic condition characterized by impaired insulin signaling and implicated in the pathogenesis of serious human diseases, such as diabetes, obesity, neurodegenerative pathologies. In pursuing our aim to identify new agents able to improve cellular insulin sensitivity, we have synthesized new 4-[(5-arylidene-4-oxo-2-phenylimino/oxothiazolidin-3-yl)methyl]benzoic acids (5, 8) and evaluated their inhibitory activity towards human protein tyrosine phosphatases PTP1B, LMW-PTP and TCPTP, enzymes which are involved in the development of insulin resistance. Compounds 5 and 8 showed from moderate to significant selectivity toward PTP1B over both the highly homologous TCPTP and the two isoforms of human LMW-PTP. In addition, most of the tested compounds selectively inhibited LMW-PTP IF1 over the isoform IF2. Docking studies into the active sites of PTP1B and LMW-PTP aided the rationalization of the observed PTP inhibitory profile. Moreover, most tested compounds were capable to induce the insulin metabolic pathway in mouse C2C12 skeletal muscle cells by remarkably stimulating both IRβ phosphorylation and 2-deoxyglucose cellular uptake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2013.11.001 | DOI Listing |
Background: Nucleophosmin 1 (NPM1) mutations represent one of the most frequent genetic alterations in acute myeloid leukemia (AML). However, the prognostic significance of concurrent molecular abnormalities and clinical features in NPM1-mutated AML remains to be fully elucidated.
Methods: We retrospectively analyzed 73 adult AML patients with NPM1 mutations.
The present investigation elucidates the therapeutic potential of glycyrrhizin, the predominant triterpene saponin isolated from (licorice), in the management of systemic lupus erythematosus (SLE), an autoimmune disorder characterized by multisystemic involvement and therapeutic recalcitrance. Comprehensive interrogation of multiple disease-specific databases facilitated the identification of crucial SLE-associated molecular targets and hub genes, with MAPK1, MAPK3, TP53, JUN, and JAK2 demonstrating the highest degree of network centrality. Subsequent molecular docking simulations and binding affinity assessments revealed compounds with exceptional complementarity to these pivotal molecular targets, establishing as a pharmacologically promising botanical source and glycyrrhizin as its principal bioactive constituent meriting comprehensive mechanistic investigation.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
Nanoscale organization of integrin-mediated receptor crosstalk is crucial for controlling cellular signaling in cancer biology. Previously, interactions between integrin αvβ6 and receptor tyrosine kinases (RTKs) have been implicated in cancer progression, but the spatial regulatory mechanisms remain undefined. Here, we developed a programmable DNA origami-based platform for nanoscale control of heteroligand multivalency and spacing, enabling systematic investigation of αvβ6-RTK interactions in cancer biology.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
Although the potential causal associations between cell-derived signaling molecules and sleep disorder (SD) have been reported, contradictions remain. This study assessed the causal effects and the mediating role of 1400 metabolites among 91 cell-derived signaling molecules and SD from a genetic perspective by performing Mendelian randomization (MR) analyses. Genetic instruments derived from publicly available genome-wide association studies were employed in this study, including 49,880 SD cases and 358,194 controls.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of Urology, The People's Hospital of Longhua, Shenzhen, China.
Growing evidence have indicated the bidirectional relationships between various inflammatory cytokines and prostate cancer (PCa), but the causality between genetic susceptibility to inflammatory cytokines and PCa was still in initial exploratory phase. This bidirectional Mendelian randomization (MR) research was manipulated to draw causative inferences and the effect of direction between 91 inflammatory cytokines and PCa. Genetic data of PCa were originated from a publicly accessible genome-wide association study with 3269 individuals and 459,664 controls, and inflammatory cytokines summarized by a protein quantitative trait locus study were embodied 14,824 participants.
View Article and Find Full Text PDF