Structural determinants of DNA recognition by plant MADS-domain transcription factors.

Nucleic Acids Res

Bioscience, Plant Research International, Wageningen, PO Box 619, 6700 AP, The Netherlands, Laboratory of Bioinformatics, Wageningen University, PO Box 569, 6700 AN Wageningen, The Netherlands, Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin D-14195, Germany, Lab

Published: February 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant MADS-domain transcription factors act as key regulators of many developmental processes. Despite the wealth of information that exists about these factors, the mechanisms by which they recognize their cognate DNA-binding site, called CArG-box (consensus CCW6GG), and how different MADS-domain proteins achieve DNA-binding specificity, are still largely unknown. We used information from in vivo ChIP-seq experiments, in vitro DNA-binding data and evolutionary conservation to address these important questions. We found that structural characteristics of the DNA play an important role in the DNA binding of plant MADS-domain proteins. The central region of the CArG-box largely resembles a structural motif called 'A-tract', which is characterized by a narrow minor groove and may assist bending of the DNA by MADS-domain proteins. Periodically spaced A-tracts outside the CArG-box suggest additional roles for this structure in the process of DNA binding of these transcription factors. Structural characteristics of the CArG-box not only play an important role in DNA-binding site recognition of MADS-domain proteins, but also partly explain differences in DNA-binding specificity of different members of this transcription factor family and their heteromeric complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936718PMC
http://dx.doi.org/10.1093/nar/gkt1172DOI Listing

Publication Analysis

Top Keywords

mads-domain proteins
16
plant mads-domain
12
transcription factors
12
mads-domain transcription
8
dna-binding site
8
dna-binding specificity
8
structural characteristics
8
play role
8
dna binding
8
mads-domain
6

Similar Publications

Trimethylation of histone H3 at lys36 (H3K36me3) promotes gene transcription and governs plant development and plant responses to environmental cues. Yet, how H3K36me3 is translated into specific downstream events remains largely uninvestigated. Here, we report that the Arabidopsis PWWP-domain protein HUA2 binds methyl-H3K36 in a PWWP motif-dependent manner.

View Article and Find Full Text PDF

Epigenetic regulation occurs over many rounds of cell division in higher organisms. However, visualisation of the regulators in vivo is limited by imaging dynamic molecules deep in tissue. We report a technology-Variable-angle Slimfield microscopy (SlimVar)-that enables tracking of single fluorescent reporters to 30 µm depth through multiple Arabidopsis thaliana root tip cell layers.

View Article and Find Full Text PDF

Alternative splicing is an important mechanism of transcriptomic and proteomic diversity and is progressively involved in cardiovascular disease (CVD) pathogenesis. Serum response factor (SRF), a critical transcription factor in cardiac development and function, may itself undergo splicing regulation, potentially altering its function in disease states. The objective of this study is to identify SRF-associated alternative splicing events in cardiac pathological conditions and examine regulatory interactions with splicing factors using RNA-seq data.

View Article and Find Full Text PDF

MEF2D Aggravates Hepatic Ischaemia-Reperfusion Injury by Transcriptionally Regulating CXCL1 Through Interacting With NAT10.

Liver Int

September 2025

Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, National Quality Control Center for Donated Organ Procurement, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University

Background And Aims: Hepatic ischaemia-reperfusion injury (IRI), a common complication after hepatectomy and liver transplantation (LT), is a local sterile inflammatory response driven by innate immunity. Myocyte enhancer factor-2D (MEF2D) plays an important role in immune inflammatory response by transcriptionally activating or inhibiting gene expression, which is tightly associated with the pathogenic progression of hepatic disorders. However, the role of MEF2D in hepatic IRI is still unclear.

View Article and Find Full Text PDF

VEL-dependent polymerization maintains the chromatin association of Polycomb proteins for the switch to epigenetic silencing.

Mol Cell

September 2025

Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. Electronic address:

Multivalent protein-chromatin interactions facilitated by higher-order protein assemblies are emerging as a crucial theme in eukaryotic gene regulation. However, understanding the underlying mechanisms in their functional context remains challenging. Arabidopsis VEL proteins assemble biomolecular condensates by head-to-tail polymerization.

View Article and Find Full Text PDF