98%
921
2 minutes
20
Alternative splicing is an important mechanism of transcriptomic and proteomic diversity and is progressively involved in cardiovascular disease (CVD) pathogenesis. Serum response factor (SRF), a critical transcription factor in cardiac development and function, may itself undergo splicing regulation, potentially altering its function in disease states. The objective of this study is to identify SRF-associated alternative splicing events in cardiac pathological conditions and examine regulatory interactions with splicing factors using RNA-seq data. Three human heart RNA-seq databases (PRJNA198165, PRJNA477855, PRJNA678360) were used, comprising various cardiac conditions like non-ischemic cardiomyopathy (NICM), ischemic cardiomyopathy (ICM), dilated cardiomyopathy (DCM), and heart failure with reduced ejection fraction (HFrEF), with and without left ventricular assist device (LVAD) support. Splicing events were identified using the rMATS tool, and correlation analyses were performed between SRF and predicted splicing factors. Functional enrichment of SRF-correlated genes was assessed via Gene Ontology (GO) and KEGG pathways. The skipped exon (SE) events were the predominant splicing type across all datasets. SRF chr6, including (Exon 2, 43,173,847-43,174,113), (Exon 4, 43,176,548-43,176,667), and (Exon 5, 43,178,294-43,178,485), were most frequently involved in SE and mutually exclusive exon (MXE) events across multiple heart failure subtypes. Correlation analysis revealed strong positive associations between SRF and several splicing factors (HNRNPL, HNRNPD, SRSF5, and SRSF8). GO and KEGG analyses revealed enrichment of muscle development, sarcomere structure, lipid metabolism, and immune signaling pathways. Our study shows that SRF is subject to extensive alternative splicing in heart failure, particularly at Exon 2 and Exon 5, suggesting isoform-specific roles in cardiac remodeling. The strong co-expression with specific splicing factors delineates a regulatory axis that may explain the pathological transcriptome in cardiomyopathy. These findings provide a foundation for exploring splicing-based biomarkers and therapeutic targets in cardiac pathology for SRF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385735 | PMC |
http://dx.doi.org/10.3390/genes16080947 | DOI Listing |
Kaohsiung J Med Sci
September 2025
Department of Medical Oncology, Haikou People's Hospital, Haikou, Hainan, People's Republic of China.
Inhibition of cuproptosis contributes to the development of non-small cell lung cancer (NSCLC). The expression of RNA-binding motif protein 15 (RBM15) is upregulated in NSCLC. Nonetheless, its relationship with cuproptosis remains unclear.
View Article and Find Full Text PDFCancer Med
September 2025
The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, China.
Background: Prostate cancer is one of the principal malignancies threatening human health, and the development of castration resistance often constitutes a major cause of treatment failure in its management.
Methods: To elucidate the potential association between programmed death-ligand 1 (PD-L1) and castration resistance in prostate cancer, we analyzed the expression levels of PD-L1 in both primary prostate cancer tissues and castration-resistant prostate cancer (CRPC) specimens as well as in corresponding cell lines by using western blots and immunohistochemistry. Then, we explored the specific mechanisms through transcriptomic sequencing technology.
Am J Physiol Cell Physiol
September 2025
Humboldt-University zu Berlin, Berlin, Germany.
Skeletal muscle atrophy and weakness are major contributors to morbidity, prolonged recovery, and long-term disability across a wide range of diseases. Atrophy is caused by breakdown of sarcomeric proteins resulting in loss of muscle mass and strength. Molecular mechanism underlying the onset of muscle atrophy and its progression have been analysed in patients, mice, and cell culture but the complementarity of these model systems remains to be explored.
View Article and Find Full Text PDFEndocr Connect
September 2025
Dysfunction of several WD40 family proteins causes diverse endocrine diseases. Until recently, MEP50, a WD40 protein, was considered a Gene of Unknown Significance (GUS) because no inherited diseases had been linked to its function. However, genetic inactivation of MEP50 in mouse models or somatic mutations in humans drive oncogenesis in several endocrine-related cancers, including those of the prostate, breast, and uterus.
View Article and Find Full Text PDFFront Immunol
August 2025
Children's Hospital of Fudan University, National Children's Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, Chin