98%
921
2 minutes
20
Sp140 is a nuclear leukocyte-specific protein involved in primary biliary cirrhosis and a risk factor in chronic lymphocytic leukemia. The presence of several chromatin related modules such as plant homeodomain (PHD), bromodomain and SAND domain suggests a role in chromatin-mediated regulation of gene expression; however, its real function is still elusive. Herein we present the solution structure of Sp140-PHD finger and investigate its role as epigenetic reader in vitro. Sp140-PHD presents an atypical PHD finger fold which does not bind to histone H3 tails but is recognized by peptidylprolyl isomerase Pin1. Pin1 specifically binds to a phosphopeptide corresponding to the L3 loop of Sp140-PHD and catalyzes cis-trans isomerization of a pThr-Pro bond. Moreover co-immunoprecipitation experiments demonstrate FLAG-Sp140 interaction with endogenous Pin1 in vivo. Overall these data include Sp140 in the list of the increasing number of Pin1 binders and expand the regulatory potential of PHD fingers as versatile structural platforms for diversified interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.12588 | DOI Listing |
Stem Cell Res
September 2025
Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035 Zhejiang, China. Electronic address:
PHD finger protein 19 (PHF19) is a polycomb protein that promoted cardiac hypertrophy via epigenetic targeting SIRT2. To determine the role of PHF19 in myocardial hypertrophy, we established a large fragment knockout model of PHF19 gene in human embryonic stem cells (hESCs-H7) using the CRISPR/Cas9 system based on a vector. This PHF19-KO cell line has a normal karyotype, classical human pluripotent stem cell morphology, strong pluripotency, and significantly reduced PHF19 gene expression, which will become a useful tool for further in-depth research on the pathogenesis of PHF19 gene deficiency induced myocardial hypertrophy.
View Article and Find Full Text PDFBiochemistry
August 2025
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Histone variant H2A.Z has been increasingly associated with cancer progression, including cancers characterized by the dysregulated function of the epigenetic reader protein BPTF (bromodomain and PHD finger containing transcription factor). Despite this association, a direct interaction between acetylated H2A.
View Article and Find Full Text PDFGenome Biol
August 2025
State Key Laboratory of Metabolism and Regulation in Complex Organisms, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, 115 DongHu Road, Research Building III, Room 404, Wuchang District, Wuhan, 430071, China.
Background: KAT6A-CBP (K/C) and KAT6A-P300 (K/P) fusions are recurrent genetic alterations in acute myeloid leukemia (AML) associated with poor prognosis. Despite their strong oncogenic potential, the mechanisms underlying their genomic targeting and leukemogenic function remain unclear. A major challenge has been their large size, which has impeded preclinical model development and mechanistic studies.
View Article and Find Full Text PDFJ Rheumatol
August 2025
A. Ma, MD, PhD, Department of Medicine, University of California, and San Francisco VA Medical Center, San Francisco, California, USA.
Polymorphisms in the locus encoding the A20 protein are strongly associated with psoriatic skin and joint disease. Reduced A20 expression, driven by both genetic and epigenetic factors, underscores its critical role as a negative regulator of psoriatic disease (PsD). Our recent study using a germline knockin mouse model harboring a mutation in A20's seventh zinc finger, which impairs A20 binding to linear (M1) ubiquitin, revealed a spontaneous phenotype resembling psoriatic arthritis.
View Article and Find Full Text PDFNucleic Acids Res
August 2025
Wuhu Hospital, Health Science Center, East China Normal University, Wuhu 241001, China.
The Cre-loxP recombination system enables precise genome engineering; however, existing photoactivatable Cre tools suffer from several limitations, including low DNA recombination efficiency, background activation, slow activation kinetics, and poor tissue penetration. Here, we present REDMAPCre, a red-light-controlled split-Cre system based on the ΔPhyA/FHY1 interaction. REDMAPCre enables rapid activation (1-s illumination) and achieves an 85-fold increase in reporter expression over background levels.
View Article and Find Full Text PDF