Article Synopsis

  • NK-cells require a "licensing" process to become fully functional in targeting and killing cells, marked by the surface expression of inhibitory KIR molecules that enhance their cytotoxicity.
  • Exercise leads to a rapid redeployment of NK-cell subsets in the blood, particularly favoring more differentiated NK-cells, regardless of exercise intensity.
  • Following exercise, NK-cell cytotoxic activity significantly increases against certain cancer cell lines, indicating that exercise may enhance the effectiveness of NK-cells for potential clinical applications.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

NK-cells undergo a "licensing" process as they develop into fully-functional cells capable of efficiently killing targets. NK-cell differentiation is accompanied by an increased surface expression of inhibitory killer immunoglobulin-like receptor (KIR) molecules, which is positively associated with cytotoxicity against the HLA-deficient K562 cell line. NK-cells are rapidly redeployed between the blood and tissues in response to acute exercise, but it is not known if exercise evokes a preferential trafficking of differentiated NK-cells or impacts NK-cell cytotoxic activity (NKCA) against HLA-expressing target cells. Sixteen healthy cyclists performed three 30-min bouts of cycling exercise at -5%, +5%, and +15% of lactate threshold. Blood samples obtained before, immediately after, and 1h after exercise were used to enumerate NK-cells and their subsets, and determine NKCA and degranulating subsets (CD107+) against cell lines of multiple myeloma (U266 and RPMI-8226), lymphoma (721.221 and 221 AEH), and leukemia (K562) origin by 4 and 10-color flow cytometry, respectively. Exercise evoked a stepwise redeployment of NK-cell subsets in accordance with differentiation status [highly-differentiated (KIR+/NKG2A-) >medium-differentiated (KIR+/NKG2A+)>low-differentiated (KIR-/NKG2A+)] that was consistent across all exercise intensities. NKCA per cell increased ∼1.6-fold against U266 and 221 AEH targets 1h post-exercise and was associated with a decreased proportion of NK-cells expressing the inhibitory receptor CD158b and increased proportion of NK-cells expressing the activating receptor NKG2C, respectively. We conclude that exercise evokes a preferential redeployment of NK-cell subsets with a high differentiation phenotype and augments cytotoxicity against HLA-expressing target cells. Exercise may serve as a simple strategy to enrich the blood compartment of highly cytotoxic NK-cell subsets that can be harvested for clinical use.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2013.10.030DOI Listing

Publication Analysis

Top Keywords

target cells
12
nk-cell subsets
12
acute exercise
8
phenotype augments
8
augments cytotoxicity
8
multiple myeloma
8
exercise
8
exercise evokes
8
evokes preferential
8
hla-expressing target
8

Similar Publications

Viscosity-sensitive fluorescent probes based on the hemicyanine for the organelle-specific visualization during autophagy and ferroptosis.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address: g

The dynamic monitoring of cell death processes remains a significant challenge due to the scarcity of highly sensitive molecular tools. In this study, two hemicyanine-based probes (5a-5b) with D-π-A structures were developed for organelle-specific viscosity monitoring. Both probes exhibited correlation with the Förster-Hoffmann viscosity-dependent relationship (R > 0.

View Article and Find Full Text PDF

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF

Problem: Endometriosis is a chronic inflammatory disease that leads to pelvic pain and infertility. Recent studies have indicated that immunological, endocrine, biochemical, and genetic irregularities, along with suboptimal quality of oocytes, embryos, and the endometrial environment, significantly impact infertility associated with endometriosis. Ectopic endometrial cells in endometriosis have the capacity to avoid apoptosis.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.

View Article and Find Full Text PDF