98%
921
2 minutes
20
This paper presents the development and experimental evaluation of a volitional control architecture for a powered-knee transfemoral prosthesis that affords the amputee user with direct control of knee impedance using measured electromyogram (EMG) potentials of antagonist muscles in the residual limb. The control methodology incorporates a calibration procedure performed with each donning of the prosthesis that characterizes the co-contraction levels as the user performs volitional phantom-knee flexor and extensor contractions. The performance envelope for EMG control of impedance is then automatically shaped based on the flexor and extensor calibration datasets. The result is a control architecture that is optimized to the user's current co-contraction activity, providing performance robustness to variation in sensor placement or physiological changes in the residual-limb musculature. Experimental results with a single unilateral transfemoral amputee user demonstrate consistent and repeatable control performance for level walking at self-selected speed over a multi-week, multi-session period of evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/ICORR.2013.6650389 | DOI Listing |
Comput Biol Med
September 2025
Department of Electrical and Computer Engineering and the Institute of Biomedical Engineering, University of New Brunswick, Fredericton, E3B 5A3, NB, Canada.
Pattern recognition-based myoelectric control is traditionally trained with static or ramp contractions, but this fails to capture the dynamic nature of real-world movements. This study investigated the benefits of training classifiers with continuous dynamic data, encompassing transitions between various movement classes. We employed both conventional (LDA) and deep learning (LSTM) classifiers, comparing their performance when trained with ramp data, continuous dynamic data, and an LSTM pre-trained with a self-supervised learning technique (VICReg).
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Université Grenoble Alpes, CNRS, Grenoble INP, TIMC, Grenoble, France.
Background And Objectives: We present a new Finite Element (FE) tongue model that was designed to precisely account for 3D tongue shapes produced during isolated French speech sounds by a male individual (RS). Such a high degree of realism will enable scientists to precisely and quantitatively assess, in a speaker-specific manner, hypotheses about speech motor control and the impact of tongue anatomy, muscle arrangements, and tongue dynamics in this context.
Methods: The shape and topology of the FE model were generated from 3D high resolution orofacial MR images of RS having his tongue in "neutral" posture.
Front Neurol
August 2025
Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Background: Gait deficits and leg spasticity are frequent symptoms in Primary and Secondary Progressive Multiple Sclerosis (PPMS and SPMS). Transcutaneous spinal cord stimulation (tSCS) may alleviate these symptoms through the reduction of spinal hyperexcitability. We conducted a single-center, randomized, sham-controlled clinical crossover study (German Clinical Trials Register: DRKS00023357, https://www.
View Article and Find Full Text PDFJ Pain
September 2025
Cyber-physical Health and Assistive Robotics Technologies Research Group, University of Nottingham, United Kingdom; School of Computer Science, University of Nottingham, Nottingham, United Kingdom.
Neck pain is among the most prevalent musculoskeletal conditions worldwide. The underlying cause mostly remains unidentified, classified as non-specific neck pain. Pain can alter movement patterns and physiological responses, suggesting that certain biomechanical and physiological changes may serve as objective biomarkers for non-specific neck pain.
View Article and Find Full Text PDFJ Voice
September 2025
Department of Otolaryngology - Head & Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France.
Objective: To investigate the potential relationship between retrograde cricopharyngeal dysfunction (R-CPD) and laryngopharyngeal reflux disease (LPRD) at baseline and whether cricopharyngeal sphincter paralysis botulinum toxin injection (BTI) is associated with an increase of LPRD symptoms in treated R-CPD patients.
Methods: Patients with clinical diagnosis of R-CPD were prospectively recruited from two European hospitals. Controls included individuals unable to burp without troublesome symptoms (CT1) and healthy subjects able to burp (CT2).