Dissimilar effects of β-lapachone- and hydroxyurea-induced DNA replication stress in root meristem cells of Allium cepa.

Plant Physiol Biochem

Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland. Electronic address:

Published: December 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two anticancer drugs, β-lapachone (β-lap, a naphthoquinone) and hydroxyurea (HU, an inhibitor of ribonucleotide reductase), differently affect nuclear morphology and cell cycle control mechanisms in root meristem cells of Allium cepa. The 18 h treatment with 100 μM β-lap results in a lowered number of M-phase cells, increased occurrence of mitotic abnormalities, including over-condensation of chromosomes, their enhanced stickiness, formation of anaphase bridges, micronucleation and reduced mitotic spindles. Following prolonged incubations using high doses of β-lap, cell nuclei reveal dark-red fluorescence evenly distributed in chromatin surrounding the unstained regions of nucleoli. Both drugs generate H2O2 and induce DNA double strand breaks, which is correlated with γ-phoshorylation of H2AX histones. However, the extent of H2AX phosphorylation (including the frequency of γ-H2AX foci and the relative number cells creating phospho-H2AX domains) is considerably reduced in root meristem cells treated jointly with the β-lap/HU mixture. Furthermore, various effects of caffeine (an inhibitor of ATM/ATR cell cycle checkpoint kinases) on β-lap- and HU-induced γ-phoshorylation of H2AX histones and the protective activity of HU against β-lap suggest that their genotoxic activities are largely dissimilar. β-Lap treatment results in the induction of apoptosis-like programmed cell death, while HU treatment leads to cell adaptation to replication stress and promotion of abnormal nuclear divisions with biphasic interphase/mitotic states of chromatin condensation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2013.10.001DOI Listing

Publication Analysis

Top Keywords

root meristem
12
meristem cells
12
replication stress
8
cells allium
8
allium cepa
8
cell cycle
8
γ-phoshorylation h2ax
8
h2ax histones
8
cells
5
β-lap
5

Similar Publications

Role of Like Heterochromatin Protein1 (LHP1) in the root apical meristem and stem cell niche maintenance in Arabidopsis.

Plant Sci

September 2025

Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, México D.F 04510, Mexico. Electronic address:

Epigenetic regulation by Polycomb Group (PcG) is essential for controlling gene repression. In plants, PcG is involved in all developmental processes, from embryogenesis to floral development, including root development. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) has been described as a PcG component, capable of recognizing the H3K27me3 mark, that together with CLF, a PcG histone methyltransferase, represses gene expression.

View Article and Find Full Text PDF

This article presents a novel perspective on plant embryogenesis, fundamentally differentiating it from the animal embryo model upon which plant models have long been based to discern the genetic and molecular mechanisms. We propose a plant embryonic body plan that aligns developmental and evolutionary insights across all five embryophyte groups (bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms). This conceptual model is grounded in a Reprogramming Potential (RP) involving an activation (RP1+) -suppression (RP1-) switch (RP1+/RP1-), which integrates embryonic development in a stepwise manner across diverse embryophytes.

View Article and Find Full Text PDF

The miR444f Regulates Root Development via Gibberellin Metabolic Pathway in Rice.

Plant Cell Environ

September 2025

Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.

MicroRNAs (miRNAs) are critical regulators of root development, further impacting plant growth and environmental adaptability. As an important miRNA family, the role of MIR444 in the root development of rice remains largely unknown. Here, we observed that loss of miR444f, which belongs to the MIR444 family, exhibited significant developmental defects in primary and lateral roots during early growth stages.

View Article and Find Full Text PDF

The CLAVATA signaling pathway regulates plant development and plant-environment interactions. CLAVATA signaling consists of mobile, cell-type or environment-specific CLAVATA3/ESR-related (CLE) peptides, which are perceived by a receptor complex consisting of leucine-rich repeat receptor-like kinases such as CLAVATA1 and receptor-like proteins such as CLAVATA2, which often functions with the pseudokinase CORYNE (CRN). CLAVATA signaling has been extensively studied in various plant species for its developmental role in meristem maintenance.

View Article and Find Full Text PDF

Both endogenous and exogenous genotoxins can inflict damage on cellular DNA, leading to reduced genomic stability in plants, which adversely affects development. Apoptosis Antagonizing Transcription Factor (AATF), also referred to as Che-1, has been identified as a binding protein for RNA polymerase II. It plays a crucial role in various cellular processes, including cell proliferation, transcriptional regulation, apoptosis, DNA damage response, and ribosome biogenesis in mammals.

View Article and Find Full Text PDF