Single-stage application of a novel decellularized dermis for treatment-resistant lower limb ulcers: positive outcomes assessed by SIAscopy, laser perfusion, and 3D imaging, with sequential timed histological analysis.

Wound Repair Regen

Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom; Wythenshawe Hospital, University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom.

Published: November 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present results of an original clinical study investigating efficacy of a decellularized dermal skin substitute (DCD) as part of a one-stage therapeutic strategy for recalcitrant leg ulcers. Twenty patients with treatment-resistant ulcers underwent hydrosurgical debridement, after which DCD was applied and covered with negative pressure dressings for 1 week. Participants were reviewed on seven occasions over 6 months. 3D photography, full-field laser perfusion imaging, spectrophotometric intracutaneous analysis, and sequential biopsies were used to monitor healing. Mean ulcer duration and surface area prior to DCD placement were 4.76 years (range 0.25-40 years) and 13.11 cm(2) (range 1.06-40.75 cm(2)), respectively. Seventy percent of ulcers were venous. Surface area decreased in all patients after treatment (range 23-100%). Mean reduction was 87% after 6 months, and 60% of patients healed completely. Wound bed hemoglobin flux increased significantly 6 weeks after treatment (p = 0.005). Histological and immunohistochemical analysis confirmed progressive DCD integration with colonization by host fibroblasts, lymphocytes, and neutrophils, resulting in fibroplasia, reepithelialisation, and angiogenesis, with correlating raised CD31, collagen I, and collagen III levels. Subgroup analysis showed differing cellular behavior depending on wound duration, with delayed angiogenesis, reduced collagen deposition, and smaller reductions in surface area in ulcers present for over 1 year. The stain intensities of immunohistochemical markers including fibronectin, collagen, and CD31 differed depending on depth from the wound surface and presence of intact epithelium. DCD safely produced significant improvement in treatment-resistant leg ulcers. With no requirement for hospital admission, anesthetic, or autogenic skin grafting, this treatment could be administered in hospital and community settings.

Download full-text PDF

Source
http://dx.doi.org/10.1111/wrr.12113DOI Listing

Publication Analysis

Top Keywords

surface area
12
laser perfusion
8
perfusion imaging
8
leg ulcers
8
ulcers
6
dcd
5
single-stage application
4
application novel
4
novel decellularized
4
decellularized dermis
4

Similar Publications

Understanding the intricate relationship between land use/land cover (LULC) transformations and land surface temperature (LST) is critical for sustainable urban planning. This study investigates the spatiotemporal dynamics of LULC and LST across Delhi, India, using thermal data from Landsat 7 (2001), Landsat 5 (2011) and Landsat 8 (2021) resampled to 30-m spatial resolution, during the peak summer month of May. The study aims to target three significant aspects: (i) to analyse and present LULC-LST dynamics across Delhi, (ii) to evaluate the implications of LST effects at the district level and (iii) to predict seasonal LST trends in 2041 for North Delhi district using the seasonal auto-regressive integrated moving average (SARIMA) time series model.

View Article and Find Full Text PDF

In vitro assessment of the inhibitory effect of antiplatelet drugs on platelet aggregation is frequently employed to guide personalized antiplatelet therapy in clinical practice. However, existing methods for detecting platelet aggregation rely heavily on high concentrations of exogenous agonists, which may obscure part of the inhibitory effect of antiplatelet drugs and lead to an underestimation of their effects. This study validates a novel analytical strategy for evaluating the effects of antiplatelet drugs by quantifying the microscopic three-dimensional morphological parameters of platelet aggregates formed through spontaneous aggregation on a glass surface.

View Article and Find Full Text PDF

In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of CoO:MnO@CoMnO composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0-2.

View Article and Find Full Text PDF

MXene/PANI/SnO electrochemical sensor for the determination of 4-aminophenol.

Mikrochim Acta

September 2025

Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Northwest Normal University, Lanzhou, 730070, China.

An electrochemical sensor based on MXene/PANI/SnO nanomaterials was developed for the detection of 4-aminophenol (4-AP). In situ oxidative growth of PANI on the MXene surface effectively hindered the stacking of the lamellae and increased the specific surface area of the composites. Further complexation of tin dioxide with swelling properties of the structure provided adsorption and catalytic sites for 4-AP.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) is critical to energy conversion technologies and requires efficient catalysts for superior performance. Herein, nitrogen-doped carbide-derived carbon (N-CDC) catalysts are prepared using novel engineered molecular architectures based on polymer-derived ceramic technology. The obtained catalyst materials show a surface N concentration of >5 wt % and a hierarchically porous structure, resulting in a specific surface area of over 2000 m g.

View Article and Find Full Text PDF