Motor resonance facilitates movement execution: an ERP and kinematic study.

Front Hum Neurosci

Laboratoire sur le Langage, le Cerveau et la Cognition L2C2, Centre National de la Recherche Scientifique/UCBL, UMR 5304, Institut des Sciences Cognitives Lyon, France.

Published: October 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Action observation, simulation and execution share neural mechanisms that allow for a common motor representation. It is known that when these overlapping mechanisms are simultaneously activated by action observation and execution, motor performance is influenced by observation and vice versa. To understand the neural dynamics underlying this influence and to measure how variations in brain activity impact the precise kinematics of motor behavior, we coupled kinematics and electrophysiological recordings of participants while they performed and observed congruent or non-congruent actions or during action execution alone. We found that movement velocities and the trajectory deviations of the executed actions increased during the observation of congruent actions compared to the observation of non-congruent actions or action execution alone. This facilitation was also discernible in the motor-related potentials of the participants; the motor-related potentials were transiently more negative in the congruent condition around the onset of the executed movement, which occurred 300 ms after the onset of the observed movement. This facilitation seemed to depend not only on spatial congruency but also on the optimal temporal relationship of the observation and execution events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796768PMC
http://dx.doi.org/10.3389/fnhum.2013.00646DOI Listing

Publication Analysis

Top Keywords

action observation
8
observation execution
8
non-congruent actions
8
actions action
8
action execution
8
motor-related potentials
8
execution
6
observation
6
motor
4
motor resonance
4

Similar Publications

Live-cell imaging of intracellular proteins enables real-time observation of protein dynamics under near-physiological conditions, providing pivotal insights for both fundamental life science research and medical applications. However, due to limitations such as poor probe permeability and cytotoxicity associated with conventional antibody-based or genetically encoded labeling techniques, live-cell imaging remains a significant challenging. To address these limitations, here in this study, we developed and rigorously validated a novel aptamer-based fluorescent probe for real-time imaging of NEK9 kinase in living cells.

View Article and Find Full Text PDF

Membrane-protein quality control in Escherichia coli involves coordinated actions of the AAA+ protease FtsH, the insertase YidC and the regulatory complex HflKC. These systems maintain proteostasis by facilitating membrane-protein insertion, folding and degradation. To gain structural insights into a putative complex formed by FtsH and YidC, we performed single-particle cryogenic electron microscopy on detergent-solubilized membrane samples, from which FtsH and YidC were purified using Ni-NTA affinity and size-exclusion chromatography.

View Article and Find Full Text PDF

Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.

View Article and Find Full Text PDF

Understanding how athletes mentally simulate and anticipate actions provides key insights into experience-driven brain plasticity. While previous studies have investigated motor imagery and action anticipation separately, little is known about how their underlying neural mechanisms converge or diverge in expert performers. This study conducted a meta-analysis using activation likelihood estimation (ALE) and meta-analytic connectivity modeling (MACM) to compare brain activation patterns between athletes and non-athletes across both tasks.

View Article and Find Full Text PDF

Efficacy and Safety of Aldosterone Synthase Inhibitors for Resistant Hypertension: A Systematic Review and Meta-Analysis.

Rev Cardiovasc Med

August 2025

Department of Emergency Medicine, General Practice Medical Center, National Clinical Research Center for Geriatrics, West China Hospital, 610041 Chengdu, Sichuan, China.

Background: Compared to patients with controllable hypertension, those with resistant hypertension (RH) have a higher incidence of cardiovascular complications, including stroke, left ventricular hypertrophy, and congestive heart failure. Therefore, an urgent need exists for improved management and control, along with more effective medications. Aldosterone synthase inhibitors (ASIs) are newly emerging drugs that have gradually attracted an increasing amount of attention.

View Article and Find Full Text PDF