Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stage 4 neuroblastomas have a high rate of local and metastatic relapse and associated disease mortality. The central nervous system (CNS) is currently one of the most common isolated relapse sites, yet the genomic alterations that contribute to these metastases are unknown. This study sought to identify recurrent DNA copy number alterations (CNAs) and target genes relating to neuroblastoma CNS metastases by studying 19 pre-CNS primary tumors and 27 CNS metastases, including 12 matched pairs. SNP microarray analyses revealed that MYCN amplified (MYCNA) tumors had recurrent CNAs different from non-MYCNA cohorts. Several CNAs known to be prevalent among primary neuroblastomas occurred more frequently in CNS metastases, including 4p-, 7q+, 12q+, and 19q- in non-MYCNA metastases, and 9p- and 14q- irrespective of MYCNA status. In addition, novel CNS metastases-related CNAs included 18q22.1 gains in non-MYCNA pre-CNS primaries and 5p15.33 gains and 15q26.1→tel losses in non-MYCNA CNS metastases. Based on minimal common regions, gene expression, and biological properties, TERT (5p), NR2F2 (15q), ALDH1A3 (15q), CDKN2A (9p), and possibly CDH7 and CDH19 (18q) were candidate genes associated with the CNS metastatic process. Notably, the 5p15 minimal common region contained only TERT, and non-MYCNA CNS metastases with focal 5p15 gains had increased TERT expression, similar to MYCNA tumors. These findings suggest that a specific genomic lesion (18q22.1 gain) predisposes to CNS metastases and that distinct lesions are recurrently acquired during metastatic progression. Among the acquired lesions, increased TERT copy number and expression appears likely to function in lieu of MYCNA to promote CNS metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/gcc.22110DOI Listing

Publication Analysis

Top Keywords

cns metastases
24
copy number
12
cns
10
metastases
9
dna copy
8
number alterations
8
central nervous
8
nervous system
8
metastases including
8
mycna tumors
8

Similar Publications

Introduction: Trastuzumab deruxtecan (T-DXd) has revolutionised treatment for metastatic breast cancer (MBC). While effective, its high cost and toxicities, such as fatigue and nausea, pose challenges.

Method: Medical records from the Joint Breast Cancer Registry in Singapore were used to study MBC patients treated with T-DXd (February 2021-June 2024).

View Article and Find Full Text PDF

Background: Pheochromocytoma (PCC) is a rare neuroendocrine tumor, with 10-15% of cases showing malignant behavior defined by metastatic spread, including exceptionally rare central nervous system (CNS) involvement. Brain metastases present unique diagnostic and therapeutic challenges due to their potential to impair neurological function. This study reports a case of malignant PCC (mPCC) with CNS metastases and a systematic review to clarify the clinical patterns, management strategies, and prognostic factors.

View Article and Find Full Text PDF

Purpose: Breast cancer (BC) is the most frequent cancer among women and the second leading cause of central nervous system (CNS) metastases. While the epidemiology of CNS metastases from BC has been well described, little is known about the treatment patterns and outcomes of young women < 40 years of age with BC that is metastatic to the CNS.

Methods: In this retrospective analysis, we identified patients with metastatic breast cancer (MBC) to the CNS who were treated at the Sunnybrook Odette Cancer Center, Toronto, Canada between 2008 and 2018.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality, with "epidermal growth factor receptor (EGFR)" mutations playing a pivotal role in tumor progression and carcinogenesis. "Third-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs)," such as Osimertinib, have significantly improved treatment outcomes by overcoming resistance mechanisms like the T790M mutation. However, Osimertinib's clinical application is limited by cardiotoxicity concerns, necessitating safer alternatives.

View Article and Find Full Text PDF

Background: The use of third-generation different tyrosine kinase inhibitors (TKIs) is considered the most effective option for treating advanced non-small cell lung cancer (aNSCLC) with epidermal growth factor receptor (EGFR) mutations. However, there is limited information on the efficacy and safety of aumolertinib in patients remains these cases.

Methods: The clinical records of patients receiving aumolertinib as first-line therapy across four hospitals in the Guangxi Zhuang Autonomous Region from April 2020 to December 2021 were retrospectively analyzed, using progression-free survival (PFS) as the primary endpoint and overall survival (OS) representing the secondary endpoint.

View Article and Find Full Text PDF