98%
921
2 minutes
20
Chromatin is the template for replication and transcription in the eukaryotic nucleus, which needs to be defined in composition and structure before these processes can be fully understood. We report an isolation protocol for the targeted purification of specific genomic regions in their native chromatin context from Saccharomyces cerevisiae. Subdomains of the multicopy ribosomal DNA locus containing transcription units of RNA polymerases I, II or III or an autonomous replication sequence were independently purified in sufficient amounts and purity to analyze protein composition and histone modifications by mass spectrometry. We present and discuss the proteomic data sets obtained for chromatin in different functional states. The native chromatin was further amenable to electron microscopy analysis yielding information about nucleosome occupancy and positioning at the single-molecule level. We also provide evidence that chromatin from virtually every single copy genomic locus of interest can be purified and analyzed by this technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874202 | PMC |
http://dx.doi.org/10.1093/nar/gkt891 | DOI Listing |
Transl Anim Sci
August 2025
Department of Animal Science - Texas A&M University, College Station, TX 77843, USA.
This experiment evaluated the effects of supplementing yeast culture ( ) on in situ ruminal degradability, rumen fermentation and microbiota responses of heifers consuming a forage-based diet. Twelve ruminally-cannulated Angus-influenced heifers were ranked by body weight ( 180 ± 4 kg) and assigned to 4 groups of 3 heifers each. Groups were enrolled in a replicated 3 × 3 Latin square design containing 3 periods of 21 d and 14-d washout intervals.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
The aging population worldwide faces an increasing burden of age-related conditions, with Alzheimer's disease being a prominent neurodegenerative concern. Drug repurposing, the practice of identifying new therapeutic applications for existing drugs, offers a promising avenue for accelerated intervention. In this study, we utilized the yeast Saccharomyces cerevisiae to screen a library of 1760 FDA-approved compounds, both with and without rapamycin, to assess potential synergistic effects on yeast growth.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2025
Technische Universität Braunschweig, Institute for Particle Technology, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
In order to be able to administer efficient probiotic formulations, it is necessary to process the respective microorganisms gently into suitable dosage forms such as tablets maintaining their viability. In previous studies, the process chain consisting of fluidized bed granulation for life-sustaining drying of Saccharomyces cerevisiae as well as subsequent processing into tablets was investigated. Granules based on dicalcium phosphate (DCP), lactose (LAC) and microcrystalline cellulose (MCC) as carrier materials were produced and tableted, and physical-mechanical as well as microbiological tablet properties were evaluated.
View Article and Find Full Text PDFPLoS Genet
September 2025
Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
Tropomyosin is an actin-binding protein (ABP) which protects actin filaments from cofilin-mediated disassembly. Distinct tropomyosin isoforms have long been hypothesized to differentially sort to subcellular actin networks and impart distinct functionalities. Nevertheless, a mechanistic understanding of the interplay between Tpm isoforms and their functional contributions to actin dynamics has been lacking.
View Article and Find Full Text PDFEvolution
September 2025
Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.
What effect does evolutionary history have on the recovery of multicellularity? Khey and Travisano (2025) show that multicellularity can be recovered in all populations of their experimentally evolved Saccharomyces cerevisiae. However, the history of these cell lines changed the tempo and mode of adaptation in which these lines recovered multicellularity. These findings uncover further details on how evolutionary histories affect future trajectories and contribute another piece to the puzzle that is the predictability of evolution.
View Article and Find Full Text PDF