98%
921
2 minutes
20
Clarin-1 (CLRN1) is the causative gene in Usher syndrome type 3A, an autosomal recessive disorder characterized by progressive vision and hearing loss. CLRN1 encodes Clarin-1, a glycoprotein with homology to the tetraspanin family of proteins. Previous cell culture studies suggest that Clarin-1 localizes to the plasma membrane and interacts with the cytoskeleton. Mouse models demonstrate a role for the protein in mechanosensory hair bundle integrity, but the function of Clarin-1 in hearing remains unclear. Even less is known of its role in vision, because the Clrn1 knockout mouse does not exhibit a retinal phenotype and expression studies in murine retinas have provided conflicting results. Here, we describe cloning and expression analysis of the zebrafish clrn1 gene, and report protein localization of Clarin-1 in auditory and visual cells from embryonic through adult stages. We detect clrn1 transcripts as early as 24h post-fertilization, and expression is maintained through adulthood. In situ hybridization experiments show clrn1 transcripts enriched in mechanosensory hair cells and supporting cells of the inner ear and lateral line organ, photoreceptors, and cells of the inner retina. In mechanosensory hair cells, Clarin-1 is polarized to the apical cell body and the synapses. In the retina, Clarin-1 localizes to lateral cell contacts between photoreceptors and is associated with the outer limiting membrane and subapical processes emanating from Müller glial cells. We also find Clarin-1 protein in the outer plexiform, inner nuclear and ganglion cell layers of the retina. Given the importance of Clarin-1 function in the human retina, it is imperative to find an animal model with a comparable requirement. Our data provide a foundation for exploring the role of Clarin-1 in retinal cell function and survival in a diurnal, cone-dominant species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888827 | PMC |
http://dx.doi.org/10.1016/j.gep.2013.09.001 | DOI Listing |
PLoS Biol
September 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC).
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
September 2025
Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
Purpose: The mammalian cochlea has two types of low abundance and highly specialized inner (IHC) and outer (OHC) mechanosensory hair cells. Their malfunction or death is a common cause of congenital and acquired deafness. IHCs and OHCs exhibit different transcriptomes during development.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205.
The RNA-binding protein TRIM71 is essential for brain development, and recent genetic studies in humans have identified as a risk gene for congenital hydrocephal-us (CH). Here, we show that monoallelic missense mutations in are associated with hearing loss (HL) and inner ear aplasia in humans. Utilizing conditional knockout mice carrying a CH and HL-associated mutation, we demonstrate that loss of TRIM71 function during early otic development (embryonic day 9 to 10) causes severe HL.
View Article and Find Full Text PDFDevelopment
September 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
The spiracular organ is an epithelial pouch or tube lined with mechanosensory hair cells, found embedded in the wall of the spiracle in many non-teleost jawed fishes. It is innervated via a branch of the anterior lateral line nerve and usually considered a specialised lateral line organ, despite its presumed function as a proprioceptor for jaw movement. It is homologous to the paratympanic organ: a hair cell-lined epithelial pouch embedded in the wall of the middle ear of birds, alligators and Sphenodon.
View Article and Find Full Text PDFNat Commun
August 2025
Stowers Institute for Medical Research, Kansas City, MO, USA.
Vertebrate inner ear mechanosensory hair cells detect sound and gravitational forces. Additionally, fishes have homologous lateral line hair cells in the skin that detect water vibrations for orientation and predator avoidance. Hair cells in the lateral line and ear of fishes and other non-mammalian vertebrates regenerate readily after damage, but mammalians lack this ability, causing deafness and vestibular defects.
View Article and Find Full Text PDF